1,621 research outputs found

    A Powerful Optimization Tool for Analog Integrated Circuits Design

    Get PDF
    This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples

    An extrinsic function-level evolvable hardware approach

    Get PDF
    The function level evolvable hardware approach to synthesize the combinational multiple-valued and binary logic functions is proposed in first time. The new representation of logic gate in extrinsic EHW allows us to describe behaviour of any multi-input multi-output logic function. The circuit is represented in the form of connections and functionalities of a rectangular array of building blocks. Each building block can implement primitive logic function or any multi-input multi-output logic function defined in advance. The method has been tested on evolving logic circuits using half adder, full adder and multiplier. The effectiveness of this approach is investigated for multiple-valued and binary arithmetical functions. For these functions either method appears to be much more efficient than similar approach with two-input one-output cell representation

    Optimal design of symmetric switching CMOS inverter using symbiotic organisms search algorithm

    Get PDF
    This paper investigates the optimal design of symmetric switching CMOS inverter using the Symbiotic Organisms Search (SOS) algorithm. SOS has been recently proposed as an effective evolutionary global optimization method that is inspired by the symbiotic interaction strategies between different organisms in an ecosystem. In SOS, the three common types of symbiotic relationships (mutualism, commensalism, and parasitism) are modeled using simple expressions, which are used to find the global minimum of the fitness function. Unlike other optimization methods, SOS has no parameters to be tuned, which makes it an attractive and easy-to-implement optimization method. Here, SOS is used to design a high speed symmetric switching CMOS inverter, which is considered the most fundamental logic gate. SOS results are compared to those obtained using several optimization methods, like particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), and other ones, available in the literature. It is shown that the SOS is a robust straight-forward evolutionary algorithm that can compete with other well-known advanced methods
    corecore