7,974 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Technologies for safe and resilient earthmoving operations: A systematic literature review

    Get PDF
    Resilience engineering relates to the ability of a system to anticipate, prepare, and respond to predicted and unpredicted disruptions. It necessitates the use of monitoring and object detection technologies to ensure system safety in excavation systems. Given the increased investment and speed of improvement in technologies, it is necessary to review the types of technology available and how they contribute to excavation system safety. A systematic literature review was conducted which identified and classified the existing monitoring and object detection technologies, and introduced essential enablers for reliable and effective monitoring and object detection systems including: 1) the application of multisensory and data fusion approaches, and 2) system-level application of technologies. This study also identified the developed functionalities for accident anticipation, prevention and response to safety hazards during excavation, as well as those that facilitate learning in the system. The existing research gaps and future direction of research have been discussed

    Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifteenth in a series of progress updates and covers the period between 27 Feb. - 17 Sep. 1992. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom program responses to specific recommendations made in ATAC Progress Report 14. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom

    ์ž๋™์ฐจ ์‚ฌ์–‘ ๋ณ€๊ฒฝ์„ ์‹ค์‹œ๊ฐ„ ๋ฐ˜์˜ํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋””์ž์ธ ์ ‘๊ทผ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2020. 8. ๊ณฝ๋…ธ์ค€.The automotive industry is entering a new phase in response to changes in the external environment through the expansion of eco-friendly electric/hydrogen vehicles and the simplification of modules during the manufacturing process. However, in the existing automotive industry, conflicts between structured production guidelines and various stake-holders, who are aligned with periodic production plans, can be problematic. For example, if there is a sudden need to change either production parts or situation-specific designs, it is often difficult for designers to reflect those requirements within the preexisting guidelines. Automotive design includes comprehensive processes that represent the philosophy and ideology of a vehicle, and seeks to derive maximum value from the vehicle specifications. In this study, a system that displays information on parts/module components necessary for real-time design was proposed. Designers will be able to use this system in automotive design processes, based on data from various sources. By applying the system, three channels of information provision were established. These channels will aid in the replacement of specific component parts if an unexpected external problem occurs during the design process, and will help in understanding and using the components in advance. The first approach is to visualize real-time data aggregation in automobile factories using Google Analytics, and to reflect these in self-growing characters to be provided to designers. Through this, it is possible to check production and quality status data in real time without the use of complicated labor resources such as command centers. The second approach is to configure the data flow to be able to recognize and analyze the surrounding situation. This is done by applying the vehicles camera to the CCTV in the inventory and distribution center, as well as the direction inside the vehicle. Therefore, it is possible to identify and record the parts resources and real-time delivery status from the internal camera function without hesitation from existing stakeholders. The final approach is to supply real-time databases of vehicle parts at the site of an accident for on-site repair, using a public API and sensor-based IoT. This allows the designer to obtain information on the behavior of parts to be replaced after accidents involving light contact, so that it can be reflected in the design of the vehicle. The advantage of using these three information channels is that designers can accurately understand and reflect the modules and components that are brought in during the automotive design process. In order to easily compose the interface for the purpose of providing information, the information coming from the three channels is displayed in their respective, case-specific color in the CAD software that designers use in the automobile development process. Its eye tracking usability evaluation makes it easy for business designers to use as well. The improved evaluation process including usability test is also included in this study. The impact of the research is both dashboard application and CAD system as well as data systems from case studies are currently reflected to the design ecosystem of the motors group.์ž๋™์ฐจ ์‚ฐ์—…์€ ์นœํ™˜๊ฒฝ ์ „๊ธฐ/์ˆ˜์†Œ ์ž๋™์ฐจ์˜ ํ™•๋Œ€์™€ ์ œ์กฐ ๊ณต์ •์—์„œ์˜ ๋ชจ๋“ˆ ๋‹จ์ˆœํ™”๋ฅผ ํ†ตํ•ด์„œ ์™ธ๋ถ€ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ƒˆ๋กœ์šด ๊ตญ๋ฉด์„ ๋งž์ดํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ ์ž๋™์ฐจ ์‚ฐ์—…์—์„œ ๊ตฌ์กฐํ™”๋œ ์ƒ์‚ฐ ๊ฐ€์ด๋“œ๋ผ์ธ๊ณผ ๊ธฐ๊ฐ„ ๋‹จ์œ„ ์ƒ์‚ฐ ๊ณ„ํš์— ๋งž์ถฐ์ง„ ์—ฌ๋Ÿฌ ์ดํ•ด๊ด€๊ณ„์ž๋“ค๊ณผ์˜ ๊ฐˆ๋“ฑ์€ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๋Š” ๋ฐฉ์•ˆ์ด ๊ด€์„ฑ๊ณผ ๋ถ€๋”ชํžˆ๋Š” ๋ฌธ์ œ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฐ‘์ž‘์Šค๋Ÿฝ๊ฒŒ ์ƒ์‚ฐ์— ํ•„์š”ํ•œ ๋ถ€ํ’ˆ์„ ๋ณ€๊ฒฝํ•ด์•ผ ํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ƒํ™ฉ์— ์ ์šฉ๋˜๋Š” ๋””์ž์ธ์„ ๋ณ€๊ฒฝํ•  ๊ฒฝ์šฐ, ์ฃผ์–ด์ง„ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ผ ๋””์ž์ด๋„ˆ๊ฐ€ ์ง์ ‘ ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ž๋™์ฐจ ๋””์ž์ธ์€ ์ฐจ์ข…์˜ ์ฒ ํ•™๊ณผ ์ด๋…์„ ๋‚˜ํƒ€๋‚ด๊ณ  ํ•ด๋‹น ์ฐจ๋Ÿ‰์ œ์›์œผ๋กœ ์ตœ๋Œ€์˜ ๊ฐ€์น˜๋ฅผ ๋Œ์–ด๋‚ด๊ณ ์ž ํ•˜๋Š” ์ข…ํ•ฉ์ ์ธ ๊ณผ์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ์›์ฒœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž๋™์ฐจ ๋””์ž์ธ ๊ณผ์ •์—์„œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋””์ž์ธ์— ํ•„์š”ํ•œ ๋ถ€ํ’ˆ/๋ชจ๋“ˆ ๊ตฌ์„ฑ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ‘œ์‹œํ•ด์ฃผ๋Š” ์‹œ์Šคํ…œ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์ ์šฉํ•˜์—ฌ ์ž๋™์ฐจ ๋””์ž์ธ ๊ณผ์ •์—์„œ ์˜ˆ์ƒ ๋ชปํ•œ ์™ธ๋ถ€ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ ์„ ํƒํ•  ๊ตฌ์„ฑ ๋ถ€ํ’ˆ์„ ๋Œ€์ฒดํ•˜๊ฑฐ๋‚˜ ์‚ฌ์ „์— ํ•ด๋‹น ๋ถ€ํ’ˆ์„ ์ดํ•ดํ•˜๊ณ  ๋””์ž์ธ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ธ ๊ฐ€์ง€ ์ •๋ณด ์ œ๊ณต ์ฑ„๋„์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž๋™์ฐจ ๊ณต์žฅ ๋‚ด ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ง‘๊ณ„๋ฅผ Google Analytics๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ฐํ™”ํ•˜๊ณ , ์ด๋ฅผ ๊ณต์žฅ ์ž์ฒด์˜ ์ž๊ฐ€ ์„ฑ์žฅ ์บ๋ฆญํ„ฐ์— ๋ฐ˜์˜ํ•˜์—ฌ ๋””์ž์ด๋„ˆ์—๊ฒŒ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ข…ํ•ฉ์ƒํ™ฉ์‹ค ๋“ฑ์˜ ๋ณต์žกํ•œ ์ธ๋ ฅ ์ฒด๊ณ„ ์—†์ด๋„ ์ƒ์‚ฐ ๋ฐ ํ’ˆ์งˆ ํ˜„ํ™ฉ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ™•์ธ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์ฐจ๋Ÿ‰์šฉ ์ฃผ์ฐจ๋ณด์กฐ ์„ผ์„œ ์นด๋ฉ”๋ผ๋ฅผ ์ฐจ๋Ÿ‰ ๋ถ€์ฐฉ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ธ๋ฒคํ† ๋ฆฌ์™€ ๋ฌผ๋ฅ˜์„ผํ„ฐ์˜ CCTV์—๋„ ์ ์šฉํ•˜์—ฌ ์ฃผ๋ณ€์ƒํ™ฉ์„ ์ธ์‹ํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰์˜ ์กฐ๋ฆฝ ์ƒ์‚ฐ ๋‹จ๊ณ„์—์„œ ๋ถ€ํ’ˆ ๋‹จ์œ„์˜ ์ด๋™, ์šด์†ก, ์ถœํ•˜๋ฅผ ๊ฑฐ์ณ ์™„์„ฑ์ฐจ์˜ ์ฃผํ–‰ ๋‹จ๊ณ„์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋ฐ์ดํ„ฐ ํ๋ฆ„์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ๋””์ž์ธ ๋ถ€๋ฌธ์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ์ดํ•ด๊ด€๊ณ„์ž๋“ค์˜ ํฐ ๋ฐ˜๋ฐœ ์—†์ด ๋‚ด๋ถ€์˜ ์นด๋ฉ”๋ผ ๊ธฐ๋Šฅ์œผ๋กœ๋ถ€ํ„ฐ ๋ถ€ํ’ˆ ๋ฆฌ์†Œ์Šค์™€ ์šด์†ก ์ƒํƒœ๋ฅผ ์‹ค์‹œ๊ฐ„ ํŒŒ์•… ๋ฐ ๊ธฐ๋ก ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณต๊ณต API์™€ ์„ผ์„œ ๊ธฐ๋ฐ˜์˜ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์„ ํ™œ์šฉํ•ด์„œ ๋„๋กœ ์œ„ ์ฐจ๋Ÿ‰ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•œ ์œ„์น˜์—์„œ์˜ ํ˜„์žฅ ์ˆ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ฐจ๋Ÿ‰ ๋ถ€ํ’ˆ ์ฆ‰์‹œ ์ˆ˜๊ธ‰ ๋ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šคํ™” ๋ฐฉ๋ฒ•๋„ ๊ฐœ๋ฐœ ๋˜์—ˆ๋‹ค. ์ด๋Š” ๋””์ž์ด๋„ˆ๋กœ ํ•˜์—ฌ๊ธˆ ๊ฐ€๋ฒผ์šด ์ ‘์ด‰ ์‚ฌ๊ณ ์—์„œ์˜ ๋ถ€ํ’ˆ ๊ต์ฒด ํ–‰ํƒœ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์–ป๊ฒŒ ํ•˜์—ฌ ์ฐจ๋Ÿ‰์˜ ๋””์ž์ธ์— ๋ฐ˜์˜ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด ์„ธ ๊ฐ€์ง€ ์ •๋ณด ์ œ๊ณต ์ฑ„๋„์„ ํ™œ์šฉํ•  ๊ฒฝ์šฐ, ์ž๋™์ฐจ ๋””์ž์ธ ๊ณผ์ •์—์„œ ๋ถˆ๋Ÿฌ๋“ค์—ฌ์˜ค๋Š” ๋ถ€ํ’ˆ ๋ฐ ๋ชจ๋“ˆ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋“ค์„ ๋””์ž์ด๋„ˆ๊ฐ€ ์ •ํ™•ํžˆ ์•Œ๊ณ  ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ๋ถ€๊ฐ๋˜์—ˆ๋‹ค. ์ •๋ณด ์ œ๊ณต์˜ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์‰ฝ๊ฒŒ ๊ตฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์‹ค์ œ๋กœ ๋””์ž์ด๋„ˆ๋“ค์ด ์ž๋™์ฐจ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ๋””์ž์ธ ํ”„๋กœ์„ธ์Šค ์ƒ์—์„œ ํ™œ์šฉํ•˜๋Š” CAD software์— ์„ธ ๊ฐ€์ง€ ์ฑ„๋„๋“ค๋กœ๋ถ€ํ„ฐ ๋“ค์–ด์˜ค๋Š” ์ •๋ณด๋ฅผ ์‚ฌ๋ก€๋ณ„ ์ปฌ๋Ÿฌ๋กœ ํ‘œ์‹œํ•˜๊ณ , ์ด๋ฅผ ์‹œ์„ ์ถ”์  ์‚ฌ์šฉ์„ฑ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ํ˜„์—… ๋””์ž์ด๋„ˆ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๊ฐœ์„ ํ•œ ๊ณผ์ •๋„ ๋ณธ ์—ฐ๊ตฌ์— ํฌํ•จ์‹œ์ผœ ์„ค๋ช…ํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Research Background 1 1.2 Objective and Scope 2 1.3 Environmental Changes 3 1.4 Research Method 3 1.4.1 Causal Inference with Graphical Model 3 1.4.2 Design Thinking Methodology with Co-Evolution 4 1.4.3 Required Resources 4 1.5 Research Flow 4 2 Data-driven Design 7 2.1 Big Data and Data Management 6 2.1.1 Artificial Intelligence and Data Economy 6 2.1.2 API (Application Programming Interface) 7 2.1.3 AI driven Data Management for Designer 7 2.2 Datatype from Automotive Industry 8 2.2.1 Data-driven Management in Automotive Industry 8 2.2.2 Automotive Parts Case Studies 8 2.2.3 Parameter for Generative Design 9 2.3 Examples of Data-driven Design 9 2.3.1 Responsive-reactive 9 2.3.2 Dynamic Document Design 9 2.3.3 Insignts from Data-driven Design 10 3 Benchmark of Data-driven Automotive Design 12 3.1 Method of Global Benchmarking 11 3.2 Automotive Design 11 3.2.1 HMI Design and UI/UX 11 3.2.2 Hardware Design 12 3.2.3 Software Design 12 3.2.4 Convergence Design Process Model 13 3.3 Component Design Management 14 4 Vehicle Specification Design in Mobility Industry 16 4.1 Definition of Vehicle Specification 16 4.2 Field Study 17 4.3 Hypothesis 18 5 Three Preliminary Practical Case Studies for Vehicle Specification to Datadriven 21 5.1 Production Level 31 5.1.1 Background and Input 31 5.1.2 Data Process from Inventory to Designer 41 5.1.3 Output to Designer 51 5.2 Delivery Level 61 5.2.1 Background and Input 61 5.2.2 Data Process from Inventory to Designer 71 5.2.3 Output to Designer 81 5.3 Consumer Level 91 5.3.1 Background and Input 91 5.3.2 Data Process from Inventory to Designer 101 5.3.3 Output to Designer 111 6 Two Applications for Vehicle Designer 86 6.1 Real-time Dashboard DB for Decision Making 123 6.1.1 Searchable Infographic as a Designer's Tool 123 6.1.2 Scope and Method 123 6.1.3 Implementation 123 6.1.4 Result 124 6.1.5 Evaluation 124 6.1.6 Summary 124 6.2 Application to CAD for vehicle designer 124 6.2.1 CAD as a Designer's Tool 124 6.2.2 Scope and Method 125 6.2.3 Implementation and the Display of the CAD Software 125 6.2.4 Result 125 6.2.5 Evaluation: Usability Test with Eyetracking 126 6.2.6 Summary 128 7 Conclusion 96 7.1 Summary of Case Studies and Application Release 129 7.2 Impact of the Research 130 7.3 Further Study 131Docto

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Robot Compatible Environment and Conditions

    Get PDF
    Service robot technology is progressing at a fast pace. Accurate robot-friendly indoor localization and harmonization of built environ-ment in alignment with digital, physical, and social environment becomes emphasized. This paper proposes the novel approach of Robot Compatible Environment (RCE) within the architectural space. Evolution of service robotics in connection with civil engineering and architecture is discussed, whereas optimum performance is to be achieved based on robotsโ€™ capabilities and spatial affordances. For ubiquitous and safe human-robot interaction, robots are to be integrated into the living environment. The aim of the research is to highlight solutions for various interconnected challenges within the built environment. Our goal is to reach findings on comparison of robotic and accessibility standards, synthesis of navigation, access to information and social acceptance. Checklists, recommendations, and design process are introduced within the RCE framework, proposing a holistic approach

    Benefits of Building Information Modelling in the Project Lifecycle: Construction Projects in Asia

    Get PDF
    Building Information Modelling (BIM) is a process involving the creation and management of objective data with property, unique identity and relationship. In the Architecture, Engineering and Construction (AEC) industry, BIM is adopted a lot in the lifecycle of buildings because of the high integration of information that it enables. Four-dimensional (4D) computer-aided design (CAD) has been adopted for many years to improve the construction planning process. BIM is adopted throughout buildingsโ€™ lifecycles, in design, construction and operation. This paper presents five large-scale public and financial projects that adopt BIM in the design, construction and operational phases. Different uses of BIM are compared and contrasted in the context of the separate backgrounds. It is concluded that productivity is improved where BIM is used to enable easy sharing and integration of information and convenient collaboration

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197
    • โ€ฆ
    corecore