24,106 research outputs found

    Bit-level pipelined digit-serial array processors

    Get PDF
    A new architecture for high performance digit-serial vector inner product (VIP) which can be pipelined to the bit-level is introduced. The design of the digit-serial vector inner product is based on a new systematic design methodology using radix-2n arithmetic. The proposed architecture allows a high level of bit-level pipelining to increase the throughput rate with minimum initial delay and minimum area. This will give designers greater flexibility in finding the best tradeoff between hardware cost and throughput rate. It is shown that sub-digit pipelined digit-serial structure can achieve a higher throughput rate with much less area consumption than an equivalent bit-parallel structure. A twin-pipe architecture to double the throughput rate of digit-serial multipliers and consequently that of the digit-serial vector inner product is also presented. The effect of the number of pipelining levels and the twin-pipe architecture on the throughput rate and hardware cost are discussed. A two's complement digit-serial architecture which can operate on both negative and positive numbers is also presented

    Formal Verification of an Iterative Low-Power x86 Floating-Point Multiplier with Redundant Feedback

    Full text link
    We present the formal verification of a low-power x86 floating-point multiplier. The multiplier operates iteratively and feeds back intermediate results in redundant representation. It supports x87 and SSE instructions in various precisions and can block the issuing of new instructions. The design has been optimized for low-power operation and has not been constrained by the formal verification effort. Additional improvements for the implementation were identified through formal verification. The formal verification of the design also incorporates the implementation of clock-gating and control logic. The core of the verification effort was based on ACL2 theorem proving. Additionally, model checking has been used to verify some properties of the floating-point scheduler that are relevant for the correct operation of the unit.Comment: In Proceedings ACL2 2011, arXiv:1110.447

    Radix-2n serial–serial multipliers

    Get PDF
    All serial–serial multiplication structures previously reported in the literature have been confined to bit serial–serial multipliers. An architecture for digit serial–serial multipliers is presented. A set of designs are derived from the radix-2n design procedure, which was first reported by the authors for the design of bit level pipelined digit serial–parallel structures. One significant aspect of the new designs is that they can be pipelined to the bit level and give the designer the flexibility to obtain the best trade-off between throughput rate and hardware cost by varying the digit size and the number of pipelining levels. Also, an area-efficient digit serial–serial multiplier is proposed which provides a 50% reduction in hardware without degrading the speed performance. This is achieved by exploiting the fact that some cells are idle for most of the multiplication operation. In the new design, the computations of these cells are remapped to other cells, which make them redundant. The new designs have been implemented on the S40BG256 device from the SPARTAN family to prove functionality and assess performance

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result
    • …
    corecore