2,880 research outputs found

    Magnetic noise reduction of in-wheel permanent magnet synchronous motors for light-duty electric vehicles

    Get PDF
    This paper presents study of a multi-slice subdomain model (MS-SDM) for persistent low-frequency sound, in a wheel hub-mounted permanent magnet synchronous motor (WHM-PMSM) with a fractional-slot non-overlapping concentrated winding for a light-duty, fully electric vehicle applications. While this type of winding provides numerous potential benefits, it has also the largest magnetomotive force (MMF) distortion factor, which leads to the electro-vibro-acoustics production, unless additional machine design considerations are carried out. To minimize the magnetic noise level radiated by the PMSM, a skewing technique is targeted with consideration of the natural frequencies under a variable-speed-range analysis. To ensure the impact of the minimization technique used, magnetic force harmonics, along with acoustic sonograms, is computed by MS-SDM and verified by 3D finite element analysis. On the basis of the studied models, we derived and experimentally verified the optimized model with 5 dBA reduction in A-weighted sound power level by due to the choice of skew angle. In addition, we investigated whether or not the skewing slice number can be of importance on the vibro-acoustic objectives in the studied WHM-PMSM.Postprint (published version

    In-wheel motors for electric vehicles

    Get PDF
    PhD ThesisThe in-wheel motor technology as the source of traction for electric vehicles has been researched recently because it is compact and ease-to-integrate. The motor is housed in the wheel. Since the room for the motor is tightly defined by the size of the wheel and there is no gearing system, the motor must have a high torque density to drive the vehicle directly and a high efficiency to keep cool. The existing motor uses a surface-mounted magnet topology. To make it more cost-competitive, the magnet material needs to be reduced while maintaining the torque performance at the rated operating condition. It is the motive of this Ph.D. research. The thesis starts with a brief introduction on the background of the electric vehicle. Then the major challenges of the in-wheel motor technology are summarised. With the derived specifications, an induction machine and a switched reluctance machine are then simulated and analysed. Still, the permanent magnet synchronous machine is proved to have the highest torque density. Change from surface-mounted to interior topology, six new magnet topologies are investigated. The V-shaped interior magnet topology shows superior torque-to-magnet-mass ratio and is easy-to-manufacture. It gives 96% torque while using 56% of the magnet mass compared to the existing motor due to the assist from the additional reluctance torque and the lower magnetic circuit reluctance. The key to use less magnet mass while avoiding the demagnetisation is the front iron shielding effect. The analytical explanation on the better resistance to demagnetisation in the V-shaped motor is provided. The magnet loss mechanism is discussed for proper segmentation. Detailed design adjustments are made to compromise between the torque-to-magnet-mass ratio and the manufactural practicality. Issues regarding to lower mechanical rigidity occurred in initial assembly of the prototype and solutions are proposed. Followed by successful assembly, experimental tests were conducted and results show good agreement with the simulation. A specific form of torque ripple is found in the V-shaped motor and occurs generally in all fractional-slot concentrated-winding machines with saliency. It is explained by an analytical model. This model is also extended to explain the generally lower reluctance torque in vi fractional-slot concentrated-winding machines. Potential design improvements are suggested and simulated for future versions.Protean Electri

    In-wheel Motors: Express Comparative Method for PMBL Motors

    Get PDF
    One of the challenges facing the electric vehicle industry today is the selection and design of a suitable in-wheel motor. Permanent Magnet Brushless (PMBL) motor is a good choice for the in-wheel motor because of its lossless excitation, improved efficiency, reduced weight and low maintenance. The PMBL motors can be further classified as Axial-Flux Twin-Rotor (AFTR) and Radial-Flux Twin-Rotor (RFTR) machines. The objective of this dissertation is to develop a fast method for the selection of appropriate in-wheel motor depending on wheel size. To achieve this, torque equations are developed for a conventional single-rotor cylindrical, twin-rotor axial-flux and twin-rotor radial-flux PMBL motors with slot-less stators based on magnetic circuit theory and the torque ratio for any two motors is expressed as a function of motor diameter and axial length. The theoretical results are verified, on the basis of magnetic field theory, by building the 3-dimensional Finite Element Method (FEM) models of the three types of motors and analyzing them in magnetostatic solver to obtain the average torque of each motor. Later, validation of software is carried out by a prototype single-rotor cylindrical slotted motor which was built for direct driven electric wheelchair application. Further, the block diagram of this in-wheel motor including the supply circuit is built in Simulink to observe the motor dynamics in practical scenario. The results from finite element analysis obtained for all the three PMBL motors indicate a good agreement with the analytical approach. For twin-rotor PMBL motors of diameter 334mm, length 82.5mm with a magnetic loading of 0.7T and current loading of 41.5A-turns/mm, the error between the express comparison method and simulation results, in computation of torque ratio, is about 1.5%. With respect to the single-rotor cylindrical motor with slotless stator, the express method for AFTR PMBL motor yielded an error of 4.9% and that of an RFTR PMBL motor resulted in an error of -7.6%. Moreover, experimental validation of the wheelchair motor gave almost the same torque and similar dynamic performance as the FEM and Simulink models respectively

    Performance comparison between Surface Mounted and Interior PM motor drives for Electric Vehicle application

    Get PDF
    Electric Vehicles make use of permanent magnet synchronous traction motors for their high torque density and efficiency. A comparison between interior permanent magnet (IPM) and surface mounted permanent magnet (SPM) motors is carried out, in terms of performance at given inverter ratings. The results of the analysis, based on a simplified analytical model and confirmed by FE analysis, show that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current. Moreover the loss behavior of the two motors is rather different in the various operating ranges with the SPM one better at low speed due to short end connections but penalized at high speed by the need of a significant de-excitation current. The analysis is validated through finite-element simulation of two actual motor design

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Lightweight High-Efficiency Power Train Propulsion with Axial- Flux Machines for Electric or Hybrid Vehicles

    Get PDF
    The aim of this chapter is to present a new type of powertrain with dimensions and low weight, for vehicles with reduced carbon emissions, which have an axial synchronous machine with one stator and two rotor, with static converter that is simple and inexpensive, a broadcast transmission system using an electric differential, with the control of the two rotors so that they can operate as motor/generator, at the same rotational direction or in opposite directions, at the same speed value, at slightly different speeds or at much different speeds by using an original dual vector control with operating on dual frequency. This is a major concern of hybrid and electric vehicle manufacturers. Expected results: a lighter power train with 20% and an increase in 5% of electric drive efficiency, low inertia rotor at high speed, a compact electric drive system with high torque and simple control, intelligent energy management system with a new vision of technological and innovation development, and equal importance of environment protection. The electrical machines for hybrid (HEV) or electric (EV) drives include a variety of different topologies. According to outcomes of literature survey, induction machines alongside synchronous machines take the major place in HEV or EV power trains

    New design of switched reluctance motor using finite element analysis for hybrid electric vehicle applications

    Get PDF
    Switched reluctance motors (SRMs) have been gaining increasing popularity and emerging as an attractive alternative to traditional electrical motors in hybrid vehicle applications due to their simple structure, ruggedness, ability of fault-tolerance, extremely high-speed operation, high power density, and low manufacturing cost. However, large torque ripple and acoustic noise are well-known as their major disadvantages. This thesis presents a novel five-phase 15/12 SRM which features higher power density, very low level of vibration with flexibility in controlling the torque ripple profile. This design is classified as an axial field SRM, hence it needs 3-dimensional finite-element analysis model. Nonetheless, an alternative 2-dimensional model is developed and simulated using FEA software (MagNet) in order to analyze the proposed model. The findings from the simulation is scrutinized and analyzed to realize various design features along with performance of the model. The finding in reference to the proposed axial field model is then compared with existing radial field models to validate its performance improvement. The manufacturing issues were addressed to prove its feasibility and cost effectiveness in conjunction with its assembly competences. Taking all the aspects into account superiority of new model\u27s efficiency is comprehended to justify its application in HEV application

    Comparison of Induction and PM Synchronous motor drives for EV application including design examples

    Get PDF
    Three different motor drives for electric traction are compared, in terms of output power and efficiency at the same stack dimensions and inverter size. Induction motor (IM), surface-mounted permanent-magnet (PM) (SPM), and interior PM (IPM) synchronous motor drives are investigated, with reference to a common vehicle specification. The IM is penalized by the cage loss, but it is less expensive and inherently safe in case of inverter unwilled turnoff due to natural de-excitation. The SPM motor has a simple construction and shorter end connections, but it is penalized by eddy-current loss at high speed, has a very limited transient overload power, and has a high uncontrolled generator voltage. The IPM motor shows the better performance compromise, but it might be more complicated to be manufactured. Analytical relationships are first introduced and then validated on three example designs and finite element calculated, accounting for core saturation, harmonic losses, the effects of skewing, and operating temperature. The merits and limitations of the three solutions are quantified comprehensively and summarized by the calculation of the energy consumption over the standard New European Driving Cycl

    Design and Implementation of Axial Flux Induction Motor Single Stator - Single Rotor for Electric Vehicle Application

    Get PDF
    Induction motor is suitable for the prime mover of the electric vehicle since the design the electric vehicle required extra slim and compact design. Therefore, this research proposes an axial flux induction motor consists of thinstator and rotor. This research will explain about the mechanical, electrical design and implementation of the axial fluxinduction motor that consists of single stator and single rotor. Basically, the design of this machine is similar to conventionalelectric motor. The differences are on the direction of the flux and its construction. The proposed motor has 500 W inputpower, low carbon material of core and the input voltage for this motor is 100 V. Material of the motor core is made fromsteel sheet st.37. The length of axial motor is 66 mm and diameter is 200 mm. From experimental results with the inputvoltage of 15 V, the rotor is able to rotate until 1366 RPM. In order to analysis the performance of the motor, simulationmodel based experimental data of the motor is required. The curve characteristic of the motor shows that the maximumtorque of the motor is 0.79 Nm
    corecore