24,047 research outputs found

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    Domain Objects and Microservices for Systems Development: a roadmap

    Full text link
    This paper discusses a roadmap to investigate Domain Objects being an adequate formalism to capture the peculiarity of microservice architecture, and to support Software development since the early stages. It provides a survey of both Microservices and Domain Objects, and it discusses plans and reflections on how to investigate whether a modeling approach suited to adaptable service-based components can also be applied with success to the microservice scenario

    Identifying and Modelling Complex Workflow Requirements in Web Applications

    Get PDF
    Workflow plays a major role in nowadays business and therefore its requirement elicitation must be accurate and clear for achieving the solution closest to business’s needs. Due to Web applications popularity, the Web is becoming the standard platform for implementing business workflows. In this context, Web applications and their workflows must be adapted to market demands in such a way that time and effort are minimize. As they get more popular, they must give support to different functional requirements but also they contain tangled and scattered behaviour. In this work we present a model-driven approach for modelling workflows using a Domain Specific Language for Web application requirement called WebSpec. We present an extension to WebSpec based on Pattern Specifications for modelling crosscutting workflow requirements identifying tangled and scattered behaviour and reducing inconsistencies early in the cycle

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time
    corecore