709 research outputs found

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Asynchronous Advanced Encryption Standard Hardware with Random Noise Injection for Improved Side-Channel Attack Resistance

    Get PDF
    This work presents the design, hardware implementation, and performance analysis of novel asynchronous AES (advanced encryption standard) Key Expander and Round Function, which offer increased side-channel attack (SCA) resistance. These designs are based on a delay-insensitive (DI) logic paradigm known as null convention logic (NCL), which supports useful properties for resisting SCAs including dual-rail encoding, clock-free operation, and monotonic transitions. Potential benefits include reduced and more uniform switching activities and reduced signal-to-noise (SNR) ratio. A novel method to further augment NCL AES hardware with random voltage scaling technique is also presented for additional security. Thereby, the proposed components leak significantly less side-channel information than conventional clocked approaches. To quantitatively verify such improvements, functional verification and WASSO (weighted average simultaneous switching output) analysis have been carried out on both conventional synchronous approach and the proposed NCL based approach using Mentor Graphics ModelSim and Xilinx simulation tools. Hardware implementation has been carried out on both designs exploiting a specified side-channel attack standard evaluation FPGA board, called SASEBO-GII, and the corresponding power waveforms for both designs have been collected. Along with the results of software simulations, we have analyzed the collected waveforms to validate the claims related to benefits of the proposed cryptohardware design approach

    A PUF based on transient effect ring oscillator and insensitive to locking phenomenon

    No full text
    International audienceThis paper presents a new silicon physical unclonable function (PUF) based on a transient effect ring oscillator (TERO). The proposed PUF has state of the art PUF characteristics with a good ratio of PUF response variability to response length. Unlike RO-PUF, it is not sensitive to the locking phenomenon, which challenges the use of ring oscillators for the design of both PUF and TRNG. The novel architecture using differential structures guarantees high stability of the TERO-PUF. The area of the TERO-PUF is relatively high, but is still comparable with other PUF designs. However, since the same piece of hardware can be used for both PUF and random number generation, the proposed principle offers an interesting low area mixed solution
    • …
    corecore