42 research outputs found

    Ad hoc networking in a medical environment

    Get PDF

    ANVIA ENTERPRISE WIRELESS LOCAL AREA NETWORK MARKET ANALYZES AND BUSINESS MODEL ENHANCEMENTS.

    Get PDF
    For almost 15 years, since it has been released, Wi-Fi has been one of the dominant technologies in telecommunication world. However, because of its weaknesses related to security, interference and weak quality of service it has not been accepted as a viable business. Furthermore, it also operates in unlicensed spectrum bands which magnify these issues. On the other hand, technological innovations through new improvements in the world of Wi-Fi have made it one of the most popular indoor communication solutions for enterprises as well as in outdoor common meeting points. Therefore, it has become imperative to study this subject due to its popularity and several issues associated with this technology to create a viable business model for Anvia Oyj. In an attempt to contribute towards this field, present thesis provides a comprehensive theoretical framework that addresses WLAN technology from different aspects including Wi-Fi roaming as well as the description of business model segments. In order to strengthen enterprise WLAN business models, a comprehensive data was collected through different resources. First, an internal interview in Anvia Oyj based on its current enterprise WLAN business model was conducted. Secondly, two surveys were conducted in different enterprise WLAN customer segments; 32 interviews with small office home office (SOHO) enterprises and 10 interviews with SMEs/LEs and municipalities. Thirdly, a global enterprise WLAN market analysis was conducted through Internet resources. Based on these, analyzes, recommendations and business model enhancements are suggested in this thesis. The findings of this research will help Anvia Oyj to achieve better performance in enterprise WLAN business segment.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Multi-dimensional Approaches Towards New Technology

    Get PDF
    This open access edited book captures the complexities and conflicts arising at the interface of intellectual property rights (IPR) and competition law. To do so, it discusses four specific themes: (a) policies governing functioning of standard setting organizations (SSOs), transparency and incentivising future innovation; (b) issue of royalties for standard essential patents (SEPs) and related disputes; (c) due process principles, procedural fairness and best practices in competition law; and (d) coherence of patent policies and consonance with competition law to support innovation in new technologies. Many countries have formulated policies and re-oriented their economies to foster technological innovation as it is seen as a major source of economic growth. At the same time, there have been tensions between patent laws and competition laws, despite the fact that both are intended to enhance consumer welfare. In this regard, licensing of SEPs has been debated extensively, although in most instances, innovators and implementers successfully negotiate licensing of SEPs. However, there have been instances where disagreements on royalty base and royalty rates, terms of licensing, bundling of patents in licenses, pooling of licenses have arisen, and this has resulted in a surge of litigation in various jurisdictions and also drawn the attention of competition/anti-trust regulators. Further, a lingering lack of consensus among scholars, industry experts and regulators regarding solutions and techniques that are apposite in these matters across jurisdictions has added to the confusion. This book looks at the processes adopted by the competition/anti-trust regulators to apply the principles of due process and procedural fairness in investigating abuse of dominance cases against innovators

    Evaluating and Characterizing the Performance of 802.11 Networks

    Get PDF
    The 802.11 standard has become the dominant protocol for Wireless Local Area Networks (WLANs). As an indication of its current and growing popularity, it is estimated that over 20 billion WiFi chipsets will be shipped between 2016 and 2021. In a span of less than 20 years, the speed of these networks has increased from 11 Mbps to several Gbps. The ever-increasing demand for more bandwidth required by applications such as large downloads, 4K video streaming, and virtual reality applications, along with the problems caused by interfering WiFi and non-WiFi devices operating on a shared spectrum has made the evaluation, understanding, and optimization of the performance of 802.11 networks an important research topic. In 802.11 networks, highly variable channel conditions make conducting valid, repeatable, and realistic experiments extremely challenging. Highly variable channel conditions, although representative of what devices actually experience, are often avoided in order to conduct repeatable experiments. In this thesis, we study existing methodologies for the empirical evaluation of 802.11 networks. We show that commonly used methodologies, such as running experiments multiple times and reporting the average along with the confidence interval, can produce misleading results in some environments. We propose and evaluate a new empirical evaluation methodology that expands the environments in which repeatable evaluations can be conducted for the purpose of comparing competing alternatives. Even with our new methodology, in environments with highly variable channel conditions, distinguishing statistically significant differences can be very difficult because variations in channel conditions lead to large confidence intervals. Moreover, running many experiments is usually very time consuming. Therefore, we propose and evaluate a trace-based approach that combines the realism of experiments with the repeatability of simulators. A key to our approach is that we capture data related to properties of the channel that impact throughput. These traces can be collected under conditions representative of those in which devices are likely to be used and then used to evaluate different algorithms or systems, resulting in fair comparisons because the alternatives are exposed to identical channel conditions. Finally, we characterize the relationships between the numerous transmission rates in 802.11n networks with the purpose of reducing the complexities caused by the large number of transmission rates when finding the optimal combination of physical-layer features. We find that there are strong relationships between most of the transmission rates over extended periods of time even in environments that involve mobility and experience interference. This work demonstrates that there are significant opportunities for utilizing relationships between rate configurations in designing algorithms that must choose the best combination of physical-layer features to use from a very large space of possibilities

    Multi-dimensional Approaches Towards New Technology

    Get PDF
    This open access edited book captures the complexities and conflicts arising at the interface of intellectual property rights (IPR) and competition law. To do so, it discusses four specific themes: (a) policies governing functioning of standard setting organizations (SSOs), transparency and incentivising future innovation; (b) issue of royalties for standard essential patents (SEPs) and related disputes; (c) due process principles, procedural fairness and best practices in competition law; and (d) coherence of patent policies and consonance with competition law to support innovation in new technologies. Many countries have formulated policies and re-oriented their economies to foster technological innovation as it is seen as a major source of economic growth. At the same time, there have been tensions between patent laws and competition laws, despite the fact that both are intended to enhance consumer welfare. In this regard, licensing of SEPs has been debated extensively, although in most instances, innovators and implementers successfully negotiate licensing of SEPs. However, there have been instances where disagreements on royalty base and royalty rates, terms of licensing, bundling of patents in licenses, pooling of licenses have arisen, and this has resulted in a surge of litigation in various jurisdictions and also drawn the attention of competition/anti-trust regulators. Further, a lingering lack of consensus among scholars, industry experts and regulators regarding solutions and techniques that are apposite in these matters across jurisdictions has added to the confusion. This book looks at the processes adopted by the competition/anti-trust regulators to apply the principles of due process and procedural fairness in investigating abuse of dominance cases against innovators

    WiMAX-WiFi techniques for baseband convergence and routing protocols

    Get PDF
    The focus of this study was to investigate solutions that, when implemented in any heterogeneous wireless network, shall enhance the existing standard and routing protocol connectivity without impacting the standard or changing the wireless transceiver’s functions. Thus achieving efficient interoperability at much reduced overheads. The techniques proposed in this research are centred on the lower layers. This because of the facts that WiMax and WiFi standards have not addressed the backward compatibility of the two technologies at the MAC and PHY layers, for both the baseband functions as well as the routing IP addresses. This thesis describes two innovate techniques submitted for a PhD degree. The first technique is to combine WiMax and WiFi signals so to utilise the same "baseband implementation chain" to handle both of these technologies, thus insuring ubiquitous data communication. WiMax-WiFi Baseband Convergence (W2BC) implementation is proposed to offer an optimum configurable solution targeted at combining the 802.16d WiMax and the 802.11a WiFi technologies. This approach provides a fertile ground for future work into combining more OFDM based wireless technologies. Based on analysis and simulation, the W2BC can achieve saving in device cost, size, power consumption and implementation complexity when compared to current side-by-side implementations for these two technologies. The second technique, called "Prime-IP", can be implemented with, and enhance, any routing protocol. During the route discovery process, Prime-IP enables any node on a wireless mesh network (WMN) to dynamically select the best available route on the network. Prime-IP proposes a novel recursive process, based on prime numbers addressing, to accumulate knowledge for nodes beyond the “neighbouring nodes”, and to determine the sequence of all the “intermediate nodes” used to form the rout

    Campus Communications Systems: Converging Technologies

    Get PDF
    This book is a rewrite of Campus Telecommunications Systems: Managing Change, a book that was written by ACUTA in 1995. In the past decade, our industry has experienced a thousand-fold increase in data rates as we migrated from 10 megabit links (10 million bits per second) to 10 gigabit links (10 billion bits per second), we have seen the National Telecommunications Policy completely revamped; we have seen the combination of voice, data, and video onto one network; and we have seen many of our service providers merge into larger corporations able to offer more diverse services. When this book was last written, A CUT A meant telecommunications, convergence was a mathematical term, triple play was a baseball term, and terms such as iPod, DoS, and QoS did not exist. This book is designed to be a communications primer to be used by new entrants into the field of communications in higher education and by veteran communications professionals who want additional information in areas other than their field of expertise. There are reference books and text books available on every topic discussed in this book if a more in-depth explanation is desired. Individual chapters were authored by communications professionals from various member campuses. This allowed the authors to share their years of experience (more years than many of us would care to admit to) with the community at large. Foreword Walt Magnussen, Ph.D. Preface Ron Kovac, Ph.D. 1 The Technology Landscape: Historical Overview . Walt Magnussen, Ph.D. 2 Emerging Trends and Technologies . Joanne Kossuth 3 Network Security . Beth Chancellor 4 Security and Disaster Planning and Management Marjorie Windelberg, Ph.D. 5 Student Services in a University Setting . Walt Magnussen, Ph.D. 6 Administrative Services David E. O\u27Neill 7 The Business Side of Information Technology George Denbow 8 The Role of Consultants . David C. Metz Glossary Michelle Narcavag

    Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems

    Get PDF
    This doctoral dissertation expands upon the field of Enterprise Internet-of-Things (E-IoT) systems, one of the most ubiquitous and under-researched fields of smart systems. E-IoT systems are specialty smart systems designed for sophisticated automation applications (e.g., multimedia control, security, lighting control). E-IoT systems are often closed source, costly, require certified installers, and are more robust for their specific applications. This dissertation begins with an analysis of the current E-IoT threat landscape and introduces three novel attacks and defenses under-studied software and protocols heavily linked to E-IoT systems. For each layer, we review the literature for the threats, attacks, and countermeasures. Based on the systematic knowledge we obtain from the literature review, we propose three novel attacks and countermeasures to protect E-IoT systems. In the first attack, we present PoisonIvy, several attacks developed to show that malicious E-IoT drivers can be used to compromise E-IoT. In response to PoisonIvy threats, we describe Ivycide, a machine-learning network-based solution designed to defend E-IoT systems against E-IoT driver threats. As multimedia control is a significant application of E-IoT, we introduce is HDMI-Walk, a novel attack vector designed to demonstrate that HDMI\u27s Consumer Electronics Control (CEC) protocol can be used to compromise multiple devices through a single connection. To defend devices from this threat, we introduce HDMI-Watch, a standalone intrusion detection system (IDS) designed to defend HDMI-enabled devices from HDMI-Walk-style attacks. Finally, this dissertation evaluates the security of E-IoT proprietary protocols with LightingStrike, a series of attacks used to demonstrate that popular E-IoT proprietary communication protocols are insecure. To address LightningStrike threats, we introduce LGuard, a complete defense framework designed to defend E-IoT systems from LightingStrike-style attacks using computer vision, traffic obfuscation, and traffic analysis techniques. For each contribution, all of the defense mechanisms proposed are implemented without any modification to the underlying hardware or software. All attacks and defenses in this dissertation were performed with implementations on widely-used E-IoT devices and systems. We believe that the research presented in this dissertation has notable implications on the security of E-IoT systems by exposing novel threat vectors, raising awareness, and motivating future E-IoT system security research

    Support of resource-aware vertical handovers in WLAN hotspots

    Get PDF
    Endgeräte wie Smartphones oder Tablets bieten häufig eine Vielfalt drahtloser Zugänge zum Internet an. Üblicherweise schließt dies die 802.11 WLANs und auch Technologien drahtloser Weitverkehrsnetze (WWANs) aus dem Bereich LTE oder WiMAX ein. Aufgrund dieser Optionen haben sich die Endanwender daran gewöhnt, überall und zu jeder Zeit auf ihre Internetdienste zuzugreifen. Damit hat auch der Datenverkehr pro Anwender zugenommen, was eine Herausforderung insbesondere für die Betreiber von WWANs ist. Soweit verfügbar, favorisieren Endanwender heutzutage eher einen drahtlosen Zugang zum Internet über WLANs als über WWANs. Des Weiteren haben die 3GPP-Standardisierungsgremien Ansätze erarbeitet, die zusätzlich Verkehr aus WWANs in Netze mit geringerer Abdeckung wie WLAN- oder Femto-Zellen abgeben. Solche Ansätze werden auch als "Traffic Offloading" bezeichnet und haben das Ziel, die WWANs zu entlasten. Dabei werden jedoch eher einfache Strategien verfolgt, die auf der Nutzung zusätzlicher Kapazitäten heterogener Netze beruhen und dann angewendet werden, wenn ein alternatives Zugangsnetz für ein Endgerät verfügbar ist. Im Rahmen dieser Arbeit zeigen wir Gewinne auf, die entstehen, wenn man die Auswahl der Endgeräte für ein WLAN-Netz stattdessen auf Basis der von ihnen belegten Ressourcen durchführt. In diesem Kontext schlagen wir vor, Geräte mit stark negativem Einfluss auf die WLAN-Kapazität wieder zurück in das WWAN zu reichen, was wir als "Onloading" bezeichnen. Ein solches "Onloading" zieht Herausforderungen in unterschiedlichen Richtungen mit sich. Die fortschreitende Miniaturisierung hat in den letzten Jahren zu dem Trend geführt, die Anzahl der Netzwerkkarten (NICs) in Endgeräten zu reduzieren. Wir bezeichnen eine NIC als multimodal, wenn sie mehrere Funktechnologien unterstützt, aber zu einem bestimmten Zeitpunkt immer nur eine davon genutzt werden kann. Deswegen stellt für eine multimodale NIC das "Onloading" während einer laufenden Verbindung eine Herausforderung dar. Wir schlagen einen Ansatz vor, der vorbereitende Mechanismen für ein "Onloading" als auch eine laufende Verbindung im WLAN über eine solche NIC ermöglicht. Des Weiteren ist es wichtig, in einem WLAN Hotspot zu entscheiden, welche Geräte einen negativen Einfluss auf die Kapazität des Netzes haben. Dafür haben wir eine Metrik entwickelt, die eine Entscheidungsgrundlage für das Onloading bildet. Diese Metrik basiert rein auf einer Beobachtung des Netzes und seiner Geräte, ermöglicht jedoch keine Entscheidung für sich neu assoziierende Geräte im WLAN. Erschwerend kommt hinzu, dass viele Eigenschaften der NICs durch herstellerabhängige Implementierungen geprägt werden. Solche Algorithmen bieten eine zusätzliche Herausforderung, da ihre internen Abläufe üblicherweise unbekannt sind. Ein bekanntes Beispiel für solche Algorithmen stellt die Anpassung der WLAN-Link-Datenraten dar. Diese Algorithmen wählen die jeweiligen Modulations- und Kodierungsschemata (MCSs) für die drahtlosen Übertragungen aus. Robuste MCSs resultieren dabei in geringere Link-Datenraten und haben somit einen starken Einfluss auf die Kapazität einer WLAN-Zelle. Aus diesem Grund fokussieren wir uns auf eine Abschätzung der Datenratenwahl eines Endgerätes. Damit lassen sich im Vorfeld Aussagen treffen, ob ein Gerät starken Einfluss auf die WLAN-Kapazität haben wird, so dass es für ein "Onloading" in Frage kommt.End-user devices such as smart phones and tablets have become very popular as they offer a variety of wireless Internet accesses ranging from the WLAN standards to WWAN technologies such as LTE or even WiMAX. Due to these different wireless access options and new emerging applications—e.g., from the areas of video streaming, social networks, as well as Internet clouds—people are increasingly connecting to the Internet with their de- vices while being on the move. In line with this, the number of devices as well as the traffic demand of end users have been reported to increase rapidly over the last years which imposes a strong challenge especially for the operators of WWANs. Thereby, end users frequently tend to use settings that favor a connectivity to the Internet whenever possible rather over WLAN than over WWAN access. Further, the cellular standardization bodies of the 3GPP envision solutions to hand over on-going wireless sessions from cellular to other small cell accesses such as WLANs or femto cells. This is also known as traffic offloading essentially freeing capacity in terms of users with a certain service in the cellular accesses. Nevertheless this offloading follows a rather simple strategy to utilize additional capacity of heterogeneous accesses such as WLANs whenever being available for a given device. This thesis shows that stronger gains can be expected if the selection of devices to be served in WLANs is conducted in a resource-aware fashion including an evaluation of the WLAN traffic in terms of the channel occupation time and MAC overhead as result of contention, interference, and fluctuating channels. In this context, this thesis envisions to onload unfavorable devices negatively affecting the WLAN capacity back to WWAN accesses. A support of such an onloading imposes challenges in different dimensions. From the hardware design of devices, there is a strong trend to limit the number of separate network interface cards (NICs) due to space and cost issues. We refer to a multi-mode NIC if it covers multiple technologies, while at a given time only access to one technology is possible. Thus, smoothly onloading a device with such a NIC is by far not trivial. We present an approach that conducts handover preparation mechanisms, while also allowing a continuous WLAN communication over a multi-mode NIC. Further, it is by far not trivial to judge which subset of associated devices is negatively affecting the capacity of a WLAN hotspot. Thus, a careful evaluation of devices regarding a selection for an onloading back to WWAN accesses imposes a challenge yet. In this direction, we present a performance metric that identifies devices degrading the WLAN capacity. While our performance metric tackles a reactive selection, it falls short to support a predictive evaluation, e.g., of devices which just joined the WLAN cell. Even worse, proprietary algorithms inside a WLAN stack impose a severe challenge as their internal routines are usually not conveyed via typical management interfaces. A well-known example for this category of algorithms are the link data rate adaptation schemes, with which WLAN devices adjust the modulation and coding scheme (MCS) for their transmissions. As MCSs resulting in low link data rates may specifically degrade the capacity of a WLAN cell, we focus on an estimation regarding the data rate selection of a device as a third contribution of this thesis. This estimation enables to select devices that will likely degrade the capacity of the WLAN hotspot for an onloading in advance
    corecore