8 research outputs found

    Linear Predistortion-less MIMO Transmitters

    Get PDF

    Design of Low-Power Short-Distance Transceiver for Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and distortion analysis of fully integrated image reject RF CMOS frontends

    Get PDF
    This thesis presents the design and experimental results of a 7.3GHz notch image reject filter, combined with a 5.8GHz low-noise amplifier (LNA), for integrated heterodyne receiver front-ends. A new image reject filter implementation is proposed. Q-enhancement circuitry for on-chip inductors are used to optimize the depth of image rejection. Experimental results show that more than 62dB of image rejection at 7.3GHz can be obtained in a standard CMOS 0.18mum technology, while operating from a 1.8V supply. The LNA exhibits a gain of 15.8dB and an IIP3 of -5.3dBm while consuming 9mW of power. With maximum image rejection, the LNA-notch combination circuit achieves a 4.1dB noise figure at 5.8GHz. The proposed notch filter alone can operate from a 1V supply voltage. It is shown analytically how circuit stability can be ensured.The implementation of new robust and stable high-Q CMOS image reject filters, which enables the realization of fully integrated heterodyne 5GHz RF receivers is also presented. A cascade of two notch filters with their image reject frequencies slightly offsetted is proposed, in order to obtain a wide image rejection bandwidth, without having to resort to the overhead of automatic tuning circuitry. Thus, power consumption, area, and complexity are significantly reduced. Experimental results show that more than 30d$ of image rejection can be obtained in a standard 0.18mum CMOS technology, over a 400MHz bandwidth centered at 7.4GHz

    Radiofrequency architectures and technologies for software defined radio

    Get PDF
    Six-port network is an interesting radiofrequency architecture with multiple possibilities. Since it was firstly introduced in the seventies as an alternative network analyzer, the six-port network has been used for many applications, such as homodyne receivers, radar systems, direction of arrival estimation, UWB (Ultra-Wide-Band), or MIMO (Multiple Input Multiple Output) systems. Currently, it is considered as a one of the best candidates to implement a Software Defined Radio (SDR). This thesis comprises an exhaustive study of this promising architecture, where its fundamentals and the state-of-the-art are also included. In addition, the design and development of a SDR 0.3-6 GHz six-port receiver prototype is presented in this thesis, which is implemented in conventional technology. The system is experimentally characterized and validated for RF signal demodulation with good performance. The analysis of the six-port architecture is complemented by a theoretical and experimental comparison with other radiofrequency architectures suitable for SDR. Some novel contributions are introduced in the present thesis. Such novelties are in the direction of the highly topical issues on six-port technique: development and optimization of real-time I-Q regeneration techniques for multiport networks; and search of new techniques and technologies to contribute to the miniaturization of the six-port architecture. In particular, the novel contributions of this thesis can be summarized as: - Introduction of a new real-time auto-calibration method for multiport receivers, particularly suitable for broadband designs and high data rate applications. - Introduction of a new direct baseband I-Q regeneration technique for five-port receivers. - Contribution to the miniaturization of six-port receivers by the use of the multilayer LTCC (Low Temperature Cofired Ceramic) technology. Implementation of a compact (30x30x1.25 mm) broadband (0.3-6 GHz) six-port receiver in LTTC technology. The results and conclusions derived from this thesis have been satisfactory, and quite fruitful in terms of publications. A total of fourteen works have been published, considering international journals and conferences, and national conferences. Aditionally, a paper has been submitted to an internationally recognized journal, which is currently under review

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore