1,681 research outputs found

    An Amphibious Fully-Soft Miniature Crawling Robot Powered by Electrohydraulic Fluid Kinetic Energy

    Full text link
    Miniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. In this paper, we introduce a fully-soft miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator. Through optimization of the operating voltage and design parameters, the crawling velocity of the robot is dramatically enhanced, reaching 16 mm/s. The optimized robot weighs 6.3 g and measures 5 cm in length, 5 cm in width, and 6 mm in height. By combining two robots in parallel, the robot can achieve a turning rate of approximately 3 degrees/s. Additionally, by reconfiguring the distribution of electrodes in the electrohydraulic actuator, the robot can achieve 2 degrees-of-freedom translational motion, improving its maneuverability in narrow spaces. Finally, we demonstrate the use of a soft water-proof skin for underwater locomotion and actuation. In comparison with other soft miniature crawling robots, our robot with full softness can achieve relatively high crawling velocity as well as increased robustness and recovery

    Underwater and Surface Aquatic Locomotion of Soft Biomimetic Robot Based on Bending Rolled Dielectric Elastomer Actuators

    Full text link
    All-around, real-time navigation and sensing across the water environments by miniature soft robotics are promising, for their merits of small size, high agility and good compliance to the unstructured surroundings. In this paper, we propose and demonstrate a mantas-like soft aquatic robot which propels itself by flapping-fins using rolled dielectric elastomer actuators (DEAs) with bending motions. This robot exhibits fast-moving capabilities of swimming at 57mm/s or 1.25 body length per second (BL/s), skating on water surface at 64 mm/s (1.36 BL/s) and vertical ascending at 38mm/s (0.82 BL/s) at 1300 V, 17 Hz of the power supply. These results show the feasibility of adopting rolled DEAs for mesoscale aquatic robots with high motion performance in various water-related scenarios.Comment: 6 Pages, 12 Figures, Published at IROS 202

    Computational resources of miniature robots: classification & implications

    Get PDF
    When it comes to describing robots, many roboticists choose to focus on the size, types of actuators, or other physical capabilities. As most areas of robotics deploy robots with large memory and processing power, the question “how computational resources limit what a robot can do” is often overlooked. However, the capabilities of many miniature robots are limited by significantly less memory and processing power. At present, there is no systematic approach to comparing and quantifying the computational resources as a whole and their implications. This letter proposes computational indices that systematically quantify computational resources—individually and as a whole. Then, by comparing 31 state-of-the-art miniature robots, a computational classification ranging from non-computing to minimally-constrained robots is introduced. Finally, the implications of computational constraints on robotic software are discussed

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Soft Robots for Ocean Exploration and Offshore Operations: A Perspective

    Get PDF
    The ocean and human activities related to the sea are under increasing pressure due to climate change, widespread pollution, and growth of the offshore energy sector. Data, in under-sampled regions of the ocean and in the offshore patches where the industrial expansion is taking place, are fundamental to manage successfully a sustainable development and to mitigate climate change. Existing technology cannot cope with the vast and harsh environments that need monitoring and sampling the most. The limiting factors are, among others, the spatial scales of the physical domain, the high pressure, and the strong hydrodynamic perturbations, which require vehicles with a combination of persistent autonomy, augmented efficiency, extreme robustness, and advanced control. In light of the most recent developments in soft robotics technologies, we propose that the use of soft robots may aid in addressing the challenges posed by abyssal and wave-dominated environments. Nevertheless, soft robots also allow for fast and low-cost manufacturing, presenting a new potential problem: marine pollution from ubiquitous soft sampling devices. In this study, the technological and scientific gaps are widely discussed, as they represent the driving factors for the development of soft robotics. Offshore industry supports increasing energy demand and the employment of robots on marine assets is growing. Such expansion needs to be sustained by the knowledge of the oceanic environment, where large remote areas are yet to be explored and adequately sampled. We offer our perspective on the development of sustainable soft systems, indicating the characteristics of the existing soft robots that promote underwater maneuverability, locomotion, and sampling. This perspective encourages an interdisciplinary approach to the design of aquatic soft robots and invites a discussion about the industrial and oceanographic needs that call for their application

    Soft-Robotic Rover with Electrodynamic Power Scavenging

    Get PDF
    The purpose of studying the capabilities of Electrodynamic Tethers (EDT) and Soft Robotics is to ascertain the feasibility of using cross-cutting EDT and soft robotics technologies to achieve future NASA mission objectives with mass and power budgets orders of magnitude lower than conventional spacecraft. In this context, the Phase I study focuses on three technological elements: the design of a soft-robotic rover that can operate in extraterrestrial oceans, demonstrating feasibility of electrodynamic tethers for power scavenging in the Europa environment, and utilizing electrolysis to power biomimetic propulsion.The Phase I results show that a soft robotic, underwater rover has many advantages over a traditional view of autonomous underwater vehicles. Many of these advantages stem from its ability to collapse or expand the body, which carries two key benefits: (i) cost savings in transport and (ii) buoyancy control. Furthermore, this rover's material offers properties that enable it to survive most oceanic conditions, withstand a likely radiation environment, and retard ice formation. The use of these soft robots under water is very attractive because buoyancy enables very large robots without the need for skeletal structures that limit their shape-changing ability. The prime limitation of soft robots for underwater exploration is their nascent state of development, an issue that this study has begun to address and that we hope to continue in Phase II. The theoretical calculations and experimental investigation on electrodynamic tethers discussed in this report show that their use in saltwater environments is feasible. However, magneto hydrodynamic effects require attention, which will be a priority in Phase II. A possible approach involves magnetic shielding of a portion of the EDT array to generate significant current from imposed alternating magnetic fields. The Phase I experiments show that this approach may enable enough power to be generated for a soft robotic rover of the scale contemplated here. This power is in the range of 1mW to 1W and determines the time required to collect and transmit science data

    Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Get PDF
    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perceptionThis study was supported by the European Commission with the RoboSoft CA (A Coordination Action for Soft Robotics, contract #619319). SGN was supported by School of Engineering seed funding (2016), Malaysia Campus, Monash University
    corecore