1,132 research outputs found

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    Bidirectional common-path for 8-to-24 gHz low noise SiGe BiCMOS T/R module core-chip

    Get PDF
    This thesis is based on the design of an 8-to-24 GHz low noise SiGe BiCMOS Transmitter/Receiver (T/R) Module core-chip in a small area by bidirectional common-path. The next-generation phased array systems require multi-functionality and multi-band operation to form multi-purpose integrated circuits. Wide bandwidth becomes a requirement for the system in various applications, such as electronic warfare, due to leading cheaper and lighter system solutions. Although III-V technologies can satisfy the high-frequency specifications, they are expensive and have a large area. The silicon-based technologies promise high integration capability with low cost, but they sacrifice from the performance to result in desired bandwidth. The presented dissertation targets system and circuit level solutions on the described content. The wideband core-chip utilized a bidirectional common path to surpass the bandwidth limitations. The bidirectionality enhances the bandwidth, noise, gain and area of the transceiver by the removal of the repetitive blocks in the unidirectional common chain. This approach allows succeeding desired bandwidth and compactness without sacrificing from the other high-frequency parameters. The realized core-chip has 31.5 and 32 dB midband gain for the receiver and transmitter respectively, with a + 2.1 dB /GHz of positive slope. Its RMS phase and amplitude errors are lower than 5.60 and 0.8 dB, respectively for 4-bit of resolution. The receiver noise figure is lower than 5 dB for the defined bandwidth while dissipating 112 mW of power in a 5.5 mm2 area. The presented results verify the advantage of the favored architecture and might replace the III-V based counterparts

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    Trade Space Analysis of Antenna Array Architecture Using System Modeling Tools

    Get PDF
    This trade study has two objectives. The first provides a trade space analysis of differing array architectures and associated radio frequency components using system-modeling tools. The second objective develops system modeling tools aiding similar analysis by other users. These objectives were accomplished by evaluating a selected group of output parameters to include overall system cost, mass, and power consumption, as well as the minimum detectable input level, system spurious free dynamic range, and selected beam spoilage parameters caused by the use of discrete phase shifters. A fixed number of designs were evaluated using simulation. The evaluation process examined input parameter and design impact on the output parameters and overall best design. The best overall design, by score, performed exceptionally well for minimum detectable input level and beam spoilage parameters, very well for cost and power performance, and poor for total mass and spurious free dynamic range. The best overall design offered a 97% improvement in evaluation score over the lowest scoring design. The placement of the first stage of low noise amplifiers within the RF component chain, as well as the number of sub-arrays, were among the design parameters found to have the most profound effect on the output results. These results match commonly accepted guidelines in radar design. Selected portions of this study were verified and compared to results from commercially available software, GENESYS by Eagleware Corporation

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Get PDF
    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ≤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications

    Enhancing Digital Controllability in Wideband RF Transceiver Front-Ends for FTTx Applications

    Get PDF
    Enhancing the digital controllability of wideband RF transceiver front-ends helps in widening the range of operating conditions and applications in which such systems can be employed. Technology limitations and design challenges often constrain the extensive adoption of digital controllability in RF front-ends. This work focuses on three major aspects associated with the design and implementation of a digitally controllable RF transceiver front-end for enhanced digital control. Firstly, the influence of the choice of semiconductor technology for a system-on-chip integration of digital gain control circuits are investigated. The digital control of gain is achieved by utilizing step attenuators that consist of cascaded switched attenuation stages. A design methodology is presented to evaluate the influence of the chosen technology on the performance of the three conventionally used switched attenuator topologies for desired attenuation levels, and the constraints that the technology suitable for high amplification places on the attenuator performance are examined. Secondly, a novel approach to the integrated implementation of gain slope equalization is presented, and the suitability of the proposed approach for integration within the RF front-end is verified. Thirdly, a sensitivity-aware implementation of a peak power detector is presented. The increased employment of digital gain control also increases the requirements on the sensitivity of the power detector employed for adaptive power and gain control. The design, implementation, and measurement results of a state-of-the-art wideband power detector with high sensitivity and large dynamic range are presented. The design is optimized to provide a large offset cancellation range, and the influence of offset cancellation circuits on the sensitivity of the power detector is studied. Moreover, design considerations for high sensitivity performance of the power detector are investigated, and the noise contributions from individual sub-circuits are evaluated. Finally, a wideband RF transceiver front-end is realized using a commercially available SiGe BiCMOS technology to demonstrate the enhancements in the digital controllability of the system. The RF front-end has a bandwidth of 500 MHz to 2.5 GHz, an input dynamic range of 20 dB, a digital gain control range larger than 30 dB, a digital gain slope equalization range from 1.49 dB/GHz to 3.78 dB/GHz, and employs a power detector with a sensitivity of -56 dBm and dynamic range of 64 dB. The digital control in the RF front-end is implemented using an on-chip serial-parallel-interface (SPI) that is controlled by an external micro-controller. A prototype implementation of the RF front-end system is presented as part of an RFIC intended for use in optical transceiver modules for fiber-to-the-x applications

    A SigmaDelta modulator for digital hearing instruments using 0.18 mum CMOS technology.

    Get PDF
    This thesis develops the design methodology for a low-voltage low-power SigmaDelta Modulator, realized using a switched op-amp technique that can be used in a hearing instrument. Switched op-amp implementation allows scaling down the design to the latest CMOS technology. A single-loop second-order SigmaDelta Modulator topology is chosen. The modulator circuit features reduced complexity, area reduction and low conversion energy. The modulator has a sampling rate of 8.2 MHz with an over-sampling ratio (OSR) of 256 to provide an audio bandwidth of 16 kHz. The modulator is implemented in a 0.18 mum digital CMOS technology with metal-to-metal sandwich structure capacitors. The modulator operates with a supply voltage of 1.8 V. The active area is 0.403 mm2. The modulator achieves a 98 dB signal-to-noise-and-distortion ratio (SNDR) and a 100 dB dynamic range (DR) at a Nyquist conversion rate of 32 kHz and consumes 1321 muW with a joule/conversion figure of merit equal to 161 x 10-12 J/s. The design methodology is developed through the extensive use of simulation tools. The behaviour simulation is carried out using Matlab/SIMULINK while circuits are simulated with Hspice using the Cadence design tools. Full-custom layout for the analog and the digital circuits is performed using the Cadence design tool. Post-processing simulation of the extracted modulator with parasitic verifies that results meet the requirements. The design has been sent to CMC for fabrication. Source: Masters Abstracts International, Volume: 43-03, page: 0947. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Design of CMOS transimpedance amplifiers for remote antenna units in fiber-wireless systems.

    Get PDF
    La memoria de la tesis doctoral: Diseño de Amplificadores de Transimpedancia para Unidades de Antena Remota en Sistemas Fibra-Inalámbrico, se presenta en la modalidad de compendio de Publicaciones. A continuación, se expone un resumen del contexto, motivation y objetivos de la tesis.A lo largo de las últimas décadas, los avances tecnológicos y el esfuerzo por desarrollar nuevos sistemas de comunicaciones han crecido al ritmo que la demanda de información aumentaba a nivel mundial. Desde la aparición de Internet, el tráfico global de datos ha incrementado de forma exponencial y se han creado infinidad de aplicaciones y contenidos desde entonces.Con la llegada de la fibra óptica se produjo un avance muy significativo en el campo de las comunicaciones, ya que la fibra de vidrio y sus características fueron la clave para crear redes de largo alcance y alta velocidad. Por otro lado, los avances en las tecnologías de fabricación de circuitos integrados y de dispositivos fotónicos de alta velocidad han encabezado el desarrollo de los sistemas de comunicaciones ópticos, logrando incrementar la tasa de transmisión de datos hasta prácticamente alcanzar el ancho de banda de la fibra óptica.Para conseguir una mayor eficiencia en las comunicaciones y aumentar la tasa de transferencia, se necesitan métodos de modulación complejos que aprovechen mejor el ancho de banda disponible. No obstante, esta mayor complejidad de la modulación de los datos requiere sistemas con mejores prestaciones en cuanto a rango dinámico y linealidad. Estos esquemas de modulación se emplean desde hace tiempo en los sistemas de comunicaciones inalámbricos, donde el ancho de banda del canal, el aire, es extremadamente limitado y codiciado.Actualmente, los sistemas inalámbricos se enfrentan a una saturación del espectro que supone un límite a la tasa de transmisión de datos. Pese a los esfuerzos por extender el rango frecuencial a bandas superiores para aumentar el ancho de banda disponible, se espera un enorme aumento tanto en el número de dispositivos, como en la cantidad de datos demandados por usuario.Ante esta situación se han planteado distintas soluciones para superar estas limitaciones y mejorar las prestaciones de los sistemas actuales. Entre estas alternativas están los sistemas mixtos fibra-inalámbrico utilizando sistemas de antenas distribuidas (DAS). Estos sistemas prometen ser una solución económica y muy efectiva para mejorar la accesibilidad de los dispositivos inalámbricos, aumentando la cobertura y la tasa de transferencia de las redes a la vez que disminuyen las interferencias. El despliegue de los DAS tendrá un gran efecto en escenarios tales como edificios densamente poblados, hospitales, aeropuertos o edificios de oficinas, así como en áreas residenciales, donde un gran número de dispositivos requieren una cada vez mayor interconectividad.Dependiendo del modo de transmisión de los datos a través de la fibra, los sistemas mixtos fibra-inalámbrico se pueden categorizar de tres formas distintas: Banda base sobre fibra (BBoF), radiofrecuencia sobre fibra (RFoF) y frecuencia intermedia sobre fibra (IFoF). Actualmente, el esquema BBoF es el más utilizado para transmisiones de larga y media distancia. No obstante, utilizar este esquema en un DAS requiere unidades de antena remota (RAU) complejas y costosas, por lo que no está claro que esta configuración pueda ser viable en aplicaciones de bajo coste que requieran de un gran número de RAUs. Los sistemas RFoF e IFoF presentan esquemas más simples, sin necesidad de integrar un modulador/demodulador, puesto que la señal se procesa en una estación base y no en las propias RAUs.El desarrollo de esta tesis se enmarca en el estudio de los distintos esquemas de DAS. A lo largo de esta tesis se presentan varias propuestas de amplificadores de transimpedancia (TIA) adecuadas para su implementación en cada uno de los tres tipos de RAU existentes. La versatilidad y el amplio campo de aplicación de este circuito integrado, tanto en comunicaciones como en otros ámbitos, han motivado el estudio de la implementación de este bloque específico en las diferentes arquitecturas de RAU y en otros sistemas, tales como un receptor de televisión por cable (CATV) o una interfaz de un microsensor inercial capacitivo.La memoria de tesis se ha dividido en tres capítulos. El Capítulo 1 se ha empleado para introducir el concepto de los DAS, proporcionando el contexto y la motivación del diseño de las RAU, partiendo desde los principios básicos de operación de los dispositivos fotónicos y electrónicos y presentando las distintas arquitecturas de RAU. El Capítulo 2 supone el núcleo principal de la tesis. En este capítulo se presenta el estudio y diseño de los diferentes TIAs, que han sido optimizados respectivamente para cada una de las configuraciones de RAU, así como para otras aplicaciones. En un tercer capítulo se recogen los resultados más relevantes y se exponen las conclusiones de este trabajo.Tras llevar a cabo la descripción y comparación de las topologías existentes de TIA, se ha llegado a las siguientes conclusiones, las cuales nos llevan a elegir la topología shunt-feedback como la más adecuada para el diseño: - El compromiso entre ancho de banda, transimpedancia, consumo de potencia y ruido es menos restrictivo en los TIAs de lazo cerrado. - Los TIAs de lazo cerrado tienen un mayor número de grados de libertad para acometer su diseño. - Esta topología presenta una mejor linealidad gracias al lazo de realimentación. Si la respuesta frecuencial del núcleo del amplificador se ajusta de manera adecuada, el TIA shunt-feedback puede presentar una respuesta frecuencial plana y estable.En esta tesis, se ha propuesto una nueva técnica de reducción de ruido, aplicable en receptores ópticos con fotodiodos con un área activa grande (~1mm2). Esta estrategia, que se ha llamado la técnica del fotodiodo troceado, consiste en la fabricación del fotodiodo, no como una estructura única, sino como un array de N sub-fotodiodos, que ocuparían la misma área activa que el original. Las principales conclusiones tras hacer un estudio teórico y realizar un estudio de su aplicación en una de las topologías de TIA propuestas son: - El ruido equivalente a la entrada es menor cuanto mayor es el número de sub-fotodiodos, dado que la contribución al ruido que depende con el cuadrado de la frecuencia (f^2) decrece con una dependencia proporcional a N. - Con una aplicación simple de la técnica, replicando el amplificador de tensión del TIA N veces y utilizando N resistencias de realimentación, cada una con un valor N veces el original, la sensibilidad del receptor aumenta aproximadamente en un factor √N y la estabilidad del sistema no se ve afectada. - Al dividir el fotodiodo en N sub-fotodiodos, la capacidad parásita de cada uno de ellos es N veces menor a la original. Con esta nueva capacidad parásita, el diseño del TIA se puede optimizar, consiguiendo una sensibilidad mucho mejor que con un único fotodiodo para el mismo valor de consumo de potencia.Las principales conclusiones respecto a los diseños de los distintos TIAs para comunicaciones son las siguientes: TIA para BBoF: - El TIA propuesto, alcanza, con un consumo de tan solo 2.9 mW, un ancho de banda de 1 GHz y una sensibilidad de -11 dBm, superando las características de trabajos anteriores en condiciones similares (capacidad del fotodiodo, tecnología y tasa de transmisión). - La técnica del fotodiodo troceado se ha aplicado a este circuito, consiguiendo una mejora de hasta 7.9 dBm en la sensibilidad para un diseño optimizado de 16 sub-fotodiodos, demostrando, en una simulación a nivel de transistor, que la técnica propuesta funciona correctamente. TIA para RFoF: - El diseño propuesto logra una figura de mérito superior a la de trabajos previos, gracias a la combinación de su bajo consumo de potencia y su mayor transimpedancia. - Además, mientras que en la mayoría de trabajos previos no se integra un control de ganancia en el TIA, esta propuesta presenta una transimpedancia controlable desde 45 hasta 65 dBΩ. A través de un sistema de control simultáneo de la transimpedancia y de la ganancia en lazo abierto del amplificador de voltaje, se consigue garantizar una respuesta frecuencial plana y estable en todos los estados de transimpedancia, que le otorga al diseño una superior versatilidad y flexibilidad. TIA para CATV: - Se ha adaptado una versión del TIA para RFoF para demostrar la capacidad de adaptación de esta estructura en una implementación en un receptor CATV con un rango de control de transimpedancia de 18 dB. - Con la implementación del control de ganancia en el TIA, no es necesario el uso de un atenuador variable en el receptor, simplificando así el número de etapas del mismo. - Gracias al control de transimpedancia, el TIA logra rangos de entrada similares a los publicados en trabajos anteriores basados en una tecnología mucho menos accesible como GaAs PHEMT. TIA para IFoF Se ha fabricado un chip en una tecnología CMOS de 65 nm que opera a 1.2 V de tensión de alimentación y se ha realizado su caracterización eléctrica y óptica. - El TIA presenta una programabilidad de su transimpedancia con un control lineal en dB entre 60 y 76 dBΩ mediante un código termómetro de 4 bits. - El ancho de banda se mantiene casi constante en todo el rango de transimpedancia, entre 500 y 600 MHz.Como conclusión general tras comparar el funcionamiento de los TIAs para las distintas configuraciones de RAU, vale la pena mencionar que el TIA para IFoF consigue una figura de mérito muy superior a la de otros trabajos previos diseñados para RFoF. Esto se debe principalmente a la mayor transimpedancia y al muy bajo consumo de potencia del TIA para IFoF propuesto. Además, se consigue una mejor linealidad, ya que, para una transmisión de 54 Mb/s con el estándar 802.11a, se consigue un EVM menor de 2 % en un rango de entrada de 10 dB, comparado con los entre 3 y 5 dB reportados en trabajos previos. El esquema IFoF presenta un gran potencial y ventajas frente al RFoF, lo que lo coloca como una buena alternativa para disminuir los costes y mejorar el rendimiento de los sistemas de antenas distribuidas.Por último, cabe destacar que el diseño de TIA propuesto y fabricado para IFoF contribuye en gran medida al desarrollo y validación de una RAU completa. Se ha demostrado la capacidad de la estructura propuesta para alcanzar un bajo ruido, alta linealidad, simplicidad en la programabilidad de la transimpedancia y adaptabilidad de la topología para diferentes requisitos, lo cual es de un gran interés en el diseño de receptores ópticos.Por otra parte, una versión del TIA para su uso en una interfaz de sensores MEMS capacitivos se ha propuesto y estudiado. Consiste en un convertidor capacidad-voltaje basado en una versión del TIA para RFoF, con el objetivo de conseguir un menor ruido y proveer de una adaptabilidad para diferentes sensores capacitivos. Los resultados más significativos y las conclusiones de este diseño se resumen a continuación: - El TIA presenta un control de transimpedancia con un rango de 34 dB manteniendo el ancho de banda constante en 1.2 MHz. También presenta un control independiente del ancho de banda, desde 75 kHz hasta 1.2 MHz, manteniendo la transimpedancia fija en un valor máximo. - Con un consumo de potencia de tan solo 54 μW, el TIA alcanza una sensibilidad máxima de 1 mV/fF, que corresponde a una sensibilidad de 4.2 mV/g y presenta un ruido de entrada de tan solo 100 µg/√("Hz" ) a 50 kHz en la configuración de máxima transimpedancia.La principal conclusión que destaca de este diseño es su versatilidad y flexibilidad. El diseño propuesto permite adaptar fácilmente la respuesta de la interfaz a una amplia gama de dispositivos sensores, ya que se puede ajustar el ancho de banda para ajustarse a distintas frecuencias de operación, así como la transimpedancia puede ser modificada para conseguir distintas sensibilidades. Este doble control independiente de ancho de banda y transimpedancia le proporcionan una adaptabilidad completa al TIA.<br /
    corecore