16,168 research outputs found

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Medical devices with embedded electronics: design and development methodology for start-ups

    Get PDF
    358 p.El sector de la biotecnología demanda innovación constante para hacer frente a los retos del sector sanitario. Hechos como la reciente pandemia COVID-19, el envejecimiento de la población, el aumento de las tasas de dependencia o la necesidad de promover la asistencia sanitaria personalizada tanto en entorno hospitalario como domiciliario, ponen de manifiesto la necesidad de desarrollar dispositivos médicos de monitorización y diagnostico cada vez más sofisticados, fiables y conectados de forma rápida y eficaz. En este escenario, los sistemas embebidos se han convertido en tecnología clave para el diseño de soluciones innovadoras de bajo coste y de forma rápida. Conscientes de la oportunidad que existe en el sector, cada vez son más las denominadas "biotech start-ups" las que se embarcan en el negocio de los dispositivos médicos. Pese a tener grandes ideas y soluciones técnicas, muchas terminan fracasando por desconocimiento del sector sanitario y de los requisitos regulatorios que se deben cumplir. La gran cantidad de requisitos técnicos y regulatorios hace que sea necesario disponer de una metodología procedimental para ejecutar dichos desarrollos. Por ello, esta tesis define y valida una metodología para el diseño y desarrollo de dispositivos médicos embebidos

    Review of battery powered embedded systems design for mission-critical low-power applications

    No full text
    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    An assessment of inductive coupling roadway powered vehicles

    Get PDF
    The technical concept underlying the roadway powered vehicle system is the combination of an electrical power source embedded in the roadway and a vehicle-mounted power pickup that is inductively coupled to the roadway power source. The feasibility of such a system, implemented on a large scale was investigated. Factors considered included current and potential transportation modes and requirements, economics, energy, technology, social and institutional issues. These factors interrelate in highly complex ways, and a firm understanding of each of them does not yet exist. The study therefore was structured to manipulate known data in equally complex ways to produce a schema of options and useful questions that can form a basis for further, harder research. A dialectical inquiry technique was used in which two adversary teams, mediated by a third-party team, debated each factor and its interrelationship with the whole of the known information on the topic

    Active disassembly applied to end of life vehicles

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Active Disassembly is technology that has been developed to allow assemblies to readily separate for recycling when they are exposed to certain triggering conditions. It is based around fasteners that use `Smart' Materials, typically Shape Memory Alloys (SMA) or Shape Memory Polymers (SMP). This has led to research in the field to be known as Active Disassembly Using Smart Materials (ADSM). Particularly within the context of the EU End of Life Vehicle (ELV) legislation, ADSM has the potential to enable the achievement of the recycling levels required. In this thesis, active disassembly solutions have been developed which have focused on the disassembly of the Instrument Panel, and the glazing within a vehicle. To achieve this, a number of novel Smart fastening devices have been developed, two of which are triggered by integral heating elements. This investigation also led to the creation of a new releasable hook and loop fastening system, known as `Shape Memory Hook and Loop Fasteners' (SM-HALF). SM-HALF is a repositionable fastening system that can be released remotely under a thermal stimulus. Research into the residual energy content of ELV batteries has been a significant part of the investigation. It has been found that it is possible to use the energy from `dead' car batteries to power at least 16 shape-memory alloy devices constructed from 25-micron diameter wire, at End of Life. No external energy input is required for disassembly. This research is timely as it provides a means of reclaiming 10% of a vehicle that would otherwise be lost to the shredder. The technology can: increase the number of parts available for recycling and reuse, separate waste streams, decrease shredder residue otherwise destined for landfill and increase economic returns for either the vehicle dismantling yards or shredder operator

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials
    corecore