8 research outputs found

    Multi-Band Outphasing Power Amplifier Design for Mobile and Base Stations

    Get PDF
    New generations of wireless communication systems require linear efficient RF power amplifiers (PAs) for higher transmission data rates and longer battery life. On the contrary, conventional PAs are normally designed for peak efficiency under maximum output power (Pout). Thus, in power back-off, the overall efficiency degrades significantly and the average efficiency is much lower than the efficiency at maximum Pout. Chireix outphasing PA, also called LINC (Linear amplification using Non-linear Components), is one of the most promising techniques to improve the efficiency at power back-off. In this method, a variable envelope input signal is first decomposed into two constant-envelope phase-modulated signals and then amplified using two highly efficient non-linear PAs. The output signals are combined preferably in a loss-less power combiner to build the desired output signal. In this way, the PA exhibits high efficiency with good linearity. In this thesis, first we analyze a complex model of outphasing combiner considering its nonidealities such as reflection and loss in transmission lines (TL). Then we propose a compact model with analytical formula that is validated through several comparative tests using ADS and Spectre RF. Furthermore, we analyze the effect of reactive load in Chireix combiner with stubs (a parallel inductor and capacitor), while distinguishing between its capacitive and inductive parts. It is demonstrated that only the capacitive part of the reactive load degrades the performances. Based on this, a new architecture (Z LINC) is proposed where the power combiner is designed to provide a zero capacitive load to the PAs whatever the outphasing angle. The theory describing the operations of the system is developed and a 900 MHz classical LINC and Z-LINC PAs are designed and measured. In addition, a miniaturization technique is proposed which employs λ/8 or smaller TLs instead of conventional λ/4 TLs in outphasing power combiner. This technique is applied to implement a 900 MHz PA using LDMOS power transistors. Besides single-band PAs, dual-band PAs are more and more needed because of an increasing demand for wireless communication terminals to handle multi-band operation. In chapter 5, a new compact design approach for dual-band transmitters based on a reconfigurable outphasing combiner is proposed. The objective is to avoid the cumbersome implementations where several PAs and matching network are used in parallel. The technique is applied to design a dual band PA with a fully integrated power combiner in 90 nm CMOS technology. An inverter-based class D PA topology, particularly suitable for outphasing and multimode operations is presented. The TLs in the combiner, realized using a network of on-chip series inductors and parallel capacitors, are reconfigurable from λ/4 in 1800 MHz to λ/8 in 900 MHz. In order to maximize the efficiency, the on-chip inductors are implemented using high quality factor on chip slab inductors. The measured maximum Pout at 900/1800 MHz are 24.3 and 22.7 dBm with maximum efficiencies of 51% and 34% respectively

    Digitally-Modulated Transmitter for Wireless Communications

    Get PDF
    With the increased digital processing capabilities of sub-micron CMOS nodes, pushing the digital world towards the antenna is becoming attractive, enabling higher reconfigurability of the transmitter, therefore, more degrees of freedom to end-users. More specifically, by adopting an RF-DAC (DAC working at RF frequency) instead of the traditional Power Amplifier block allows for increased performance of the whole transmitter. Hence, a polar transmitter is being studied and an implementation in 130 nm CMOS node is expected

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    RF to Millimeter-wave Linear Power Amplifiers in Nanoscale CMOS SOI Technology

    Get PDF
    The low manufacturing cost, integration capability with baseband and digital circuits, and high operating frequency of nanoscale CMOS technologies have propelled their applications into RF and microwave systems. Implementing fully-integrated RF to millimeter-wave (mm-wave) CMOS power amplifiers (PAs), nevertheless, remains challenging due to the low breakdown voltages of CMOS transistors and the loss from on-chip matching networks. These limitations have reduced the design space of CMOS power amplifiers to narrow-band, low linearity metrics often with insufficient gain, output power, and efficiency. A new topology for implementing power amplifiers based on stacking of CMOS SOI transistors is proposed. The input RF power is coupled to the transistors using on-chip transformers, while the gate terminal of teach transistor is dynamically biased from the output node. The output voltages of the stacked transistors are added constructively to increase the total output voltage swing and output power. Moreover, the stack configuration increases the optimum load impedance of the PA to values close to 50 ohm, leading to power, efficiency and bandwidth enhancements. Practical design issues such as limitation in the number of stacked transistors, gate oxide breakdown, stability, effect of parasitic capacitances on the performance of the PA and large chip areas have also been addressed. Fully-integrated RF to mm-wave frequency CMOS SOI PAs are successfully implemented and measured using the proposed topology

    Advanced High Efficiency and Broadband Power Amplifiers Based on GaN HEMT for Wireless Applications

    Get PDF
    In advanced wireless communication systems, a rapid increase in the mobile data traffic and broad information bandwidth requirement can lead to the use of complex spectrally efficient modulation schemes such as orthogonal frequency-division multiplexing (OFDM). Generally, complex non-constant envelope modulated signals have very high peak-to-average ratios (PAPR). Doherty Power Amplifier (DPA) is the most commonly used power amplifier (PA) architecture for meeting high efficiency requirement in advanced communication systems, in the presence of high PAPR signals. However, limited bandwidth of the conventional DPA is often identified as a bottleneck for widespread deployment in base-station application for multi-standard communication signals. The research in this thesis focuses on the development of new designs to overcome the bandwidth limitations of a conventional PA. In particular, the bandwidth limitation factors of a conventional DPA architecture are studied. Moreover, a novel design technique is proposed for DPA’s bandwidth extension. In the first PA design, limited bandwidth and linearity problems are addressed simultaneously. For this purpose, a new Class-AB PA with extended bandwidth and improved linearity is presented for LTE 5 W pico-cell base-station over a frequency range of 1.9–2.5 GHz. A two-tone load/source-pull and bias point optimization techniques are used to extract the sweet spots for optimum efficiency and linearity from the 6 W Cree GaN HEMT device for the whole frequency band. The realized prototype presented saturated PAE higher than 60%, a power gain of 13 dB and an average output power of 36.5 dBm over the desired bandwidth. The proposed PA is also characterized by QAM-256 and LTE input communication signals for linearity characterization. Measured ACPRs are lower than -40 dBc for an input power of 17 dBm. The documented results indicate that the proposed Class-AB architecture is suitable for pico-cell base-station application. In the second PA design, an inherent bandwidth limitation of Class-F power amplifier forced by the improper load harmonics terminations at multiple harmonics is investigated and analyzed. It is demonstrated that the impedance tuning of the second and third harmonics at the drain terminal of a transistor is crucial to achieve a broadband performance. The effect of harmonics terminations on power amplifier’s bandwidth up to fourth harmonics is investigated. The implemented broadband Class-F PA achieved maximum saturated drain efficiency 60-77%, and 10 W output power throughout (1.1-2.1 GHz) band. The simulated and measured results verify that the presented Class-F PA is suitable for a high-efficiency system application in wireless communications over a wide range of frequencies. In the third PA design, a single- and dual-input DPA for LTE application in the 3.5 GHz frequency band are presented and compared. The main goal of this study is to improve the performance of gallium–nitride (GaN) Doherty transmitters over a wide bandwidth in the 3.5 GHz frequency band. For this purpose, the linearity-efficiency trade-off for the two proposed architectures is discussed in detail. Simulated results demonstrate that the single- and dual-input DPA exhibited a peak drain efficiency (DE) of 72.4% and 77%, respectively. Both the circuits showed saturated output power more than 42.9 dBm throughout the designed band. Saturated efficiency, gain and bandwidth of dual-input DPA are higher than that of the single-input DPA. On the other side, dual-input DPA linearity is worse as compared to the single-input DPA. In the last PA design, a novel design methodology for ultra-wide band DPA is presented. The bandwidth limitation factors of the conventional Doherty amplifier are discussed on the ground of broadband matching with impedance variation. To extend the DPA bandwidth, three different methods are used such as post-matching, low impedance transformation ratio and the optimization of offset line for wide bandwidth in the proposed design. The proposed Doherty power amplifier was designed and realized based on two 10 W GaN HEMT devices from Cree Inc. The measured results exhibited 42-57% of efficiency at the 6-dB back-off and saturated output power ranges from 41.5 to 43.1 dBm in the frequency range of 1.15 to 2.35 GHz (68.5% fractional bandwidth). Moreover, less than -25 dBc ACPRs are measured at 42 dBm peak output power throughout the designed band. In a nutshell, all power amplifiers presented in this thesis are suitable for wideband operation and their performances are satisfying the required operational standard. Therefore, this thesis has a significant contribution in the domain of high efficiency and broadband power amplifiers

    High-efficiency and broadband PA design considering the impact of device knee voltage

    Get PDF
    The new 5G communications system requires the power amplifier (PA) circuits to be operated with high efficiency at both peak and back-off power within a broad RF and video bandwidth. The new 5G signal has an increased complexity for the modulation scheme, resulting into a high signal peak-to-average ratio (PAPR). In consequence, the performances of the PA are limited. This thesis addresses the design analysis for high efficiency and broadband PAs based on harmonic tuned continuous class-F (CCF) mode by including the I-V knee interaction. Most PA modes and waveform engineering techniques to elevate PA performances are ignoring the practical knee voltage. This thesis addresses the new performances of the CCF mode when the I-V knee interaction from the waveforms in considered. The current waveforms are a function of voltage waveforms, that clipped and generates harmonics when voltage waveform is expanded into knee region, as the device is operated with compression. The new performances of the CCF mode does not follow the ideal theoretical performances, instead, changes along the phase of 2nd harmonic impedance termination. The interaction of the current and voltage (I-V) knee on the waveforms of CCF mode allowing load-pull emulation to be calculated, where the α in CCF mode is the function of 2nd harmonic impedances termination in the actual device’s load-pull technique. In this research, the load-pull emulation is performed only through mathematical calculation in MATLAB by manipulating the equation of drain current and voltage waveforms. Output power and efficiency contours are generated from load-pull emulation for CCF mode, that have almost identical behaviour with the actual device model and measurement, when the non-linear I-V knee interaction is considered. This emulation also investigates the efficiency of the device at the output power back-off (OPBO) range, with the sweep of the α parameter. The investigation of the new CCF mode with I-V knee interaction is used as guide for a PA design with restriction of the phase of 2nd harmonic impedances termination to keep the efficiency high across wide bandwidth. The video-bandwidth (VBW) performances for the PA can be extended using a baseband termination circuit at the device’s output to shift the resonance frequency coming from the bias network and the device’s output parasitic capacitance. The VBW enhancement is crucial in the 5G communication system where it is expected to operate up to 800 MHz, or even beyond this frequency, for the instantaneous bandwidth. Analyses are made on the components used in the baseband termination circuit in this thesis, where the VBW can be further extended by having the highest value of the shunt capacitor that is placed close to the device, with the lowest equivalent series inductance. This configuration shifted the resonance frequency and reduced the impedances seen by the device output on the matching and bias network. All the methods described in this thesis are adapted to design and investigate the performances of compact PA with integrated matching and baseband termination network. This PA is aimed to operate with high efficiency at the 50 Ω load impedances and at load modulated output power back-off across a wide-bandwidth. A CW simulation tests are used to evaluate the performances of the PA at peak power, while 2 tones signal with sweep frequency spacing is used to evaluate the VBW performances
    corecore