43,970 research outputs found

    High Level Synthesis and Evaluation of the Secure Hash Standard for FPGAs

    Get PDF
    Secure hash algorithms (SHAs) are important components of cryptographic applications. SHA performance on central processing units (CPUs) is slow, therefore, acceleration must be done using hardware such as Field Programmable Gate Arrays (FPGAs). Considerable work has been done in academia using FPGAs to accelerate SHAs. These designs were implemented using Hardware Description Language (HDL) based design methodologies, which are tedious and time consuming. High Level Synthesis (HLS) enables designers to synthesize optimized FPGA hardware from algorithm specifications in programming languages such as C/C++. This substantially reduces the design cost and time. In this thesis, the Altera SDK for OpenCL (AOCL) HLS tool was used to synthesize the SHAs on FPGAs and to explore the design space of the algorithms. The results were evaluated against the previous HDL based designs. Synthesized FPGA hardware performance was comparable to the HDL based designs despite the simpler and faster design process

    Application of object-orientation to HDL-based designs

    Get PDF
    The increase in the scale of VLSI circuits over the last two decades has been of great importance to the development process. To cope with this ever­growing design complexity. new development techniques and methodologies have been researched and applied. The early 90's have witnessed the uptake of a new kind of design methodology based on Hardware Description Languages (HDL). This methodology has helped to master the possibilities inherent in our ability to manufacture ever-larger designs. However. while HDL based design methodology is sufficient to address today's standard ASIC sizes, it reaches its limits when considering tomorrow's design scales. Already. RISC processor chip descriptions can contain tens of thousands of HDLlines. Object-Oriented design methodology has recently had a considerable Impact in the software design community as it is tightly coupled with the handling of complex systems. Object-Orientation concentrates on data rather than functions since. throughout the design process. data are more stable than functions. Methodologies for both hardware and software have been introduced through the application of HDLs to hardware design. Common design constructs and principles that have proved successful in software language development should therefore be considered in order to assess their suitability for HDLs based designs. A new methodology was created to emphasise on encapsulation. abstraction and classification of designs. using standard VHDL constructs. This achieves higher levels of modelling along with an Improved reusability through design inheritance. The development of extended semantics for integrating Object-Orientation in the VHDL language is described. Comparisons are made between the modelling abilities of the proposed extension and other competing proposals. A UNIX based Object-Oriented to standard VHDL pre-processor is described along with translation techniques and their issues related to synthesis and simulation. This tool permitted validation of the new design methodology by application to existing design problems

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Data Transfers Analysis in Computer Assisted Design Flow of FPGA Accelerators for Aerospace Systems

    Get PDF
    The integration of Field Programmable Gate Arrays (FPGAs) in an aerospace system improves its efficiency and its flexibility thanks to their programmability, but increases the design complexity. The design flows indeed have to be composed of several steps to fill the gap between the starting solution, which is usually a reference sequential implementation, and the final heterogeneous solution which includes custom hardware accelerators. Among these steps, there are the analysis of the application to identify the functionalities that gain advantages in execution on hardware and the generation of their implementations by means of Hardware Description Languages. Generating these descriptions for a software developer can be a very difficult task because of the different programming paradigms of software programs and hardware descriptions. To facilitate the developer in this activity, High Level Synthesis techniques have been developed aiming at (semi-)automatically generating hardware implementations of specifications written in high level languages (e.g., C). With respect to other embedded systems scenarios, the aerospace systems introduce further constraints that have to be taken into account during the design of these heterogeneous systems. In this type of systems explicit data transfers to and from FPGAs are preferred to the adoption of a shared memory architecture. The first approach indeed potentially improves the predictability of the produced solutions, but the sizes of all the data transferred to and from any devices must be known at design time. Identifying the sizes in presence of complex C applications which use pointers can be a not so easy task. In this paper, a semi-automatic design flow based on the integration of an aerospace design flow, an application analysis technique, and High Level Synthesis methodologies is presented. The initial reference application is analyzed to identify which are the sizes of the data exchanged among the different components of the application. Next, starting from the high level specification and from the results of this analysis, High Level Synthesis techniques are applied to automatically produce the hardware accelerators
    • …
    corecore