2,127 research outputs found

    Cell module and fuel conditioner development

    Get PDF
    The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described

    Laser printing of silver-based micro-wires in ZrO2 substrate for smart implant applications

    Get PDF
    Smart implants are endowed with functions of sensing, actuating and control to solve problems that may arise during their use. The assembly of these functions along the implant surface is still a challenge. However, with the advent of 3D printing, it is possible to print on implants’ surface, communication channels or micro-antennas or even sensoric/actuating areas. Hence, a positive impact on the long-term performance of the implants (including hip, dental and knee) may be expected with the proposed approach. Despite titanium and Ti6Al4V titanium alloy are the standard choice for implants fabrication, 3Y-TZP (tetragonal 3% mol yttria-stabilized zirconia) has emerged as a ceramic material suitable to overcome titanium alloy problems, due to its numerous advantages. In this sense, this work is concerned with the ability of printing silver-based communication system in zirconia substrates by using laser technology. For this purpose, micro-cavities were created on ZrO2 substrate, where the silver powder was placed and sintered into them. Through the laser approach, silver-based wires with great quality and low resistivity values were achieved. The flexural strength results showed that the mechanical resistance of zirconia disks was affected by laser micro-wire printing, which decreased as the laser passage was performed. Based on the results, it is believed that the proposed approach seems to be effective for the manufacturing of implants with intrinsic capacities, useful for smart implant applications.This work has been supported by FCT (Fundação para a Ciência e Tecnologia - Portugal) in the scope of the projects UID/EEA/04436/ 2019 and NORTE-01-0145-FEDER-000018-HAMaBICo and Add.Additive_Manufacturing to Portuguese Industry_POCI-01-0247- FEDER-024533. Thank the CNPq (205791/2014-0) and CAPES for the financial support

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Summary Report: Essential Programs and Services Career and Technical Education Component Review

    Get PDF
    Background The Career and Technical Education (CTE) funding model was implemented in FY2019 after a lengthy period of development. The component was scheduled for a review in FY2020 and FY2021 as part of the ongoing cycle of analysis of all major components of Maine’s Essential Programs and Services (EPS) education cost model. Due to the breadth and complexity of the CTE funding model, and the fact that this is the first time it has been reviewed to see how it is being implemented in actual practice, the findings have been broken into several sections. Appendix A provides the overall plan of analyses, which were divided into two separate reports. The Part I report issued in summer 2021 included analyses related to student enrollment trends, including the impact of the Covid-19 pandemic on program enrollments, as well as analyses related to facilities and maintenance spending. The Part II report issued in March 2022 described the remainder of the analyses, which are divided into three distinct sections based on the source data used in each task. Section I presented findings that were derived from staffing data. Section 2 described patterns from expenditure data from the most recent pre-pandemic program year. Section 3 summarized results of a questionnaire that was administered to all CTEs to gather data that are not routinely collected. The data from the questionnaire responses were needed to address a series of questions posed by the “Maine CTE Subsidy Workgroup,” which was formed by Maine Administrators of Career & Technical Education (MACTE) and the Maine School Superintendent Association (MSSA). The Maine Department of Education (MDOE) agreed to include the questions in the research plan for the EPS component review contract with MEPRI. The research topics and questions came from the Maine Department of Education, prior reports by MEPRI and MDOE, and the MACTE/MSSA CTE Subsidy Workgroup as mentioned above. Some of the information was needed for decisions to be made by MDOE during the continuing implementation of the EPS CTE model. The adequacy of sub-components was evaluated. And in some cases updated model parameters were computed. Miscellaneous topics 2 and questions presented by the MACTE/MSSA Workgroup were also addressed. Additionally, relevant findings were presented to the LD 313 work group, which was established after the MEPRI research project was well underway. The materials prepared by MEPRI for the LD 313 work group are included as Appendix D. The current summary report is a compilation of the findings of the Part I and Part II reports together with a summary of the main findings and elaboration on data and analysis methods. It begins with an overall summary of our most pertinent findings in order to aid the reader in navigating the various sections of the report. A methods section describes the data and the analysis techniques used in the review. Finally, detailed findings are presented in two parts corresponding to the Part I and Part II reports previously submitted

    Composite structural materials

    Get PDF
    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Comparison of the Accuracy between Denture Bases Produced by Subtractive and Additive Manufacturing Methods: A Pilot Study

    Get PDF
    Today, two different types of CAD-CAM fabrication methods for complete denture bases are available besides the conventional protocols: a subtractive milling process from a prepolymerized block of polymethylmethacrylate and an additive manufacturing process that built the denture base using a light-cured liquid in a VAT-polymerization process. The aim of this study was to evaluate and to compare the accuracy and precision of denture prosthetic bases made with subtractive and additive manufacturing technologies and to compare them with a denture base with the conventional method in muffle. From the results obtained, 3D printing dentures show a statistically significant higher accuracy than milled prosthetic bases. Milled prosthetic bases have similar accuracy than conventional fabricated dentures

    Mechanical properties of CoCr dental-prosthesis restorations made by three manufacturing processes. Influence of the microstructure and topography

    Get PDF
    The aim of this study is to compare the mechanical properties of three different dental restorations’ manufacturing processes (CADCAM milling, casting and laser sintering) generated by only one laboratory scanner focusing on marginal fit analysis and their mechanical properties. A chrome-cobalt (Cr-Co) alloy from the same batch was used for three different methods to make an implant abutment. This simulates a maxillary right first molar that was fixed in a hemi-maxillary stone model. Five scans were performed by each tested framework. Nine frameworks were manufactured for each manufacture procedure. Field-Emission Scanning Electron Microscope (FE-SEM) direct vision was used to marginal gap measurement in five critical points for each specimen. In order to fix the samples in the microscope chamber, the restorations were submitted at a compression load of 50 N. The samples always have the same orientation and conditions. The resolution of the microscope is 4 nm and it is equipped by J image software. The microstructure of the samples was also determined with the FE-SEM equipped with EDS-microanalysis. Roughness parameters were measured using White Light Interferometry (WLI). The arithmetical mean for the Ra and Rq of each sample was calculated. The samples were mechanically characterized by means of microhardness and flexural testing. Servo-hydraulic testing machine was used with cross-head rate of 1 mm/min. Two-way ANOVA statistical analysis was performed to determine whether the marginal discrepancies and mechanical properties were significantly different between each group (significance level p < 0.05). The overall mean marginal gap values were: from 50.53 ± 10.30 µm for the samples produced by CADCAM to 85.76 ± 22.56 µm for the samples produced by the casting method. Laser sintering presents a marginal gap of 60.95 ± 20.66 µm. The results revealed a statistically significant difference (p-value < 0.005) in the mean marginal gap between the CADCAM systems studied. The higher flexure load to fracture for these restorations were for CADCAM restoration and the lower was for the casting samples. For these restorations, CADCAM Restoration yielded a higher flexure load to fracture and Casting ones yielded the lower. Porosity and microstructure play a very important role in the mechanical properties.Peer ReviewedPostprint (published version
    • …
    corecore