7,527 research outputs found

    Flexible and stretchable circuit technologies for space applications

    Get PDF
    Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60 µm thick chip package, including the embedding of a 20 µm thick chip, laser or protolithic via definition to the chip contacts and application of fan out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material e.g. polyimide. Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler

    Signal and Power Integrity Challenges for High Density System-on-Package

    Get PDF
    As the increasing desire for more compact, portable devices outpaces Moore’s law, innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrating more active and passive components into the package itself, as the case for system-on-package (SoP), has shown very promising results in overall size reduction and increased performance of electronic systems.With this ability to shrink electrical systems comes the many challenges of sustaining, let alone improving, reliability and performance. The fundamental signal, power, and thermal integrity issues are discussed in detail, along with published techniques from around the industry to mitigate these issues in SoP applications
    • …
    corecore