2,902 research outputs found

    A Local Logic for Realizability in Web Service Choreographies

    Full text link
    Web service choreographies specify conditions on observable interactions among the services. An important question in this regard is realizability: given a choreography C, does there exist a set of service implementations I that conform to C ? Further, if C is realizable, is there an algorithm to construct implementations in I ? We propose a local temporal logic in which choreographies can be specified, and for specifications in the logic, we solve the realizability problem by constructing service implementations (when they exist) as communicating automata. These are nondeterministic finite state automata with a coupling relation. We also report on an implementation of the realizability algorithm and discuss experimental results.Comment: In Proceedings WWV 2014, arXiv:1409.229

    Compatibility Checking for Asynchronously Communicating Software

    Get PDF
    International audienceCompatibility is a crucial problem that is encountered while constructing new software by reusing and composing existing components. A set of software components is called compatible if their composition preserves certain properties, such as deadlock freedom. However, checking compatibility for systems communicating asynchronously is an undecidable problem, and asynchronous communication is a common interaction mechanism used in building software systems. A typical approach in analyzing such systems is to bound the state space. In this paper, we take a different approach and do not impose any bounds on the number of participants or the sizes of the message buffers. Instead, we present a sufficient condition for checking compatibility of a set of asynchronously communicating components. Our approach relies on the synchronizability property which identifies systems for which interaction behavior remains the same when asynchronous communication is replaced with synchronous communication. Using the synchronizability property, we can check the compatibility of systems with unbounded message buffers by analyzing only a finite part of their behavior. We have implemented a prototype tool to automate our approach and we have applied it to many examples

    Detecting Ontological Conflicts in Protocols between Semantic Web Services

    Full text link
    The task of verifying the compatibility between interacting web services has traditionally been limited to checking the compatibility of the interaction protocol in terms of message sequences and the type of data being exchanged. Since web services are developed largely in an uncoordinated way, different services often use independently developed ontologies for the same domain instead of adhering to a single ontology as standard. In this work we investigate the approaches that can be taken by the server to verify the possibility to reach a state with semantically inconsistent results during the execution of a protocol with a client, if the client ontology is published. Often database is used to store the actual data along with the ontologies instead of storing the actual data as a part of the ontology description. It is important to observe that at the current state of the database the semantic conflict state may not be reached even if the verification done by the server indicates the possibility of reaching a conflict state. A relational algebra based decision procedure is also developed to incorporate the current state of the client and the server databases in the overall verification procedure

    A correct-by-construction model for asynchronously communicating systems

    Get PDF
    The design and verification of distributed software systems is often hindered by their ever-increasing complexity and their asynchronous operational semantics. This article considers choreography specifications for distributed systems to reduce that complexity. We use labelled state-transitions systems as ground model for both choreographies and the corresponding distributed systems. Based on Event-B method, we propose a stepwise correct-by-construction model to build asynchronous distributed systems which a priori realise their choreographies. We rely on a sufficient and necessary realisability condition and we apply several refinement steps w.r.t. that condition to generate the distributed peers. The first refinement returns peer behaviours obtained by synchronous projection. The previously computed system is then refined into its asynchronous version using unbounded FIFO buffers. We prove, thanks to invariant preservation, that a sequence of exchanged messages is preserved at each refinement step. We provide a formalised proof of a realisability algorithm for deterministic choreographies. Besides that, our contribution is twofold: the approach is a priori and the problackposed solution scales up to any number of peers communicating with each other

    Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Full text link
    Service-oriented sensor-actuator networks (SOSANETs) are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the \pi-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the \pi-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Formal verification of enterprise integration architectures

    Get PDF
    This is a near-finished paper to be presented in an international research conference. Weak Bisimulation is a process calculus equivalence relation, applied for the verification of communicating concurrent systems [Miln 99]. In this paper we propose the application of Weak Bisimulation for Enterprise Application Integration verification. Formal verification is carried out by taking the system specification and design models of an integrated system and converting them into value passing CCS (Calculus of Communicating Systems) processes. If a Weak Bisimulation relation is found between the two models, then it could be concluded that the EI Architecture is a valid one. The formal verification of an EI Architecture would give value to an EI project framework, allowing the challenge of cumbersome and complex testing typically faced by EI projects [Khan 05], to be alleviated, and thus increasing the possibility of a successful EI project, delivered on time and within the stipulated budgeted costs. This paper shows the applicability of value passing CCS (or equivalent) formal notation to model the EI systems characteristics, as well as investigates into the computation complexity of available weak bisimulation algorithms, in order to analyze the applicability of this proposition in real life.peer-reviewe
    corecore