46 research outputs found

    Design and Implementation of a Multi-Channel Field-Programmable Analog Front-End For a Neural Recording System

    Get PDF
    Neural recording systems have attracted an increasing amount of attention in recent years, and researchers have put major efforts into designing and developing devices that can record and monitor neural activity. Understanding the functionality of neurons can be used to develop neuroprosthetics for restoring damages in the nervous system. An analog front-end block is one of the main components in such systems, by which the neuron signals are amplified and processed for further analysis. In this work, our goal is to design and implement a field-programmable 16-channel analog front-end block, where its programmability is used to deal with process variation in the chip. Each channel consists of a two-stage amplifier as well as a band-pass filter with digitally tunable low corner frequency. The 16 recording channels are designed using four different architectures. The first group of recording channels employs one low-noise amplifier (LNA) as the first-stage amplifier and a fully differential amplifier for the second stage along with an NMOS transistor in the feedback loop. In the second group of architectures, we use an LNA as the first stage and a single-ended amplifier for implementing the second stage. Groups three and four have the same design as groups one and two; however the NMOS transistor in the feedback loop is replaced by two PMOS transistors. In our design, the circuits are optimized for low noise and low power consumption. Simulations result in input-referred noise of 6.9 ÎĽVrms over 0.1 Hz to 1 GHz. Our experiments show the recording channel has a gain of 77.5 dB. The chip is fabricated in AMS 0.35 ÎĽm CMOS technology for a total die area of 3 mmĂ—3 mm and consumes 2.7 mW power from a 3.3 V supply. Moreover, the chip is tested on a PCB board that can be employed for in-vivo recording

    A Wireless, High-Voltage Compliant, and Energy-Efficient Visual Intracortical Microstimulator

    Get PDF
    RÉSUMÉ L’objectif général de ce projet de recherche est la conception, la mise en oeuvre et la validation d’une interface sans fil intracorticale implantable en technologie CMOS avancée pour aider les personnes ayant une déficience visuelle. Les défis majeurs de cette recherche sont de répondre à la conformité à haute tension nécessaire à travers l’interface d’électrode-tissu (IET), augmenter la flexibilité dans la microstimulation et la surveillance multicanale, minimiser le budget de puissance pour un dispositif biomédical implantable, réduire la taille de l’implant et améliorer le taux de transmission sans fil des données. Par conséquent, nous présentons dans cette thèse un système de microstimulation intracorticale multi-puce basée sur une nouvelle architecture pour la transmission des données sans fil et le transfert de l’énergie se servant de couplages inductifs et capacitifs. Une première puce, un générateur de stimuli (SG) éconergétique, et une autre qui est un amplificateur de haute impédance se connectant au réseau de microélectrodes de l’étage de sortie. Les 4 canaux de générateurs de stimuli produisent des impulsions rectangulaires, demi-sinus (DS), plateau-sinus (PS) et autres types d’impulsions de courant à haut rendement énergétique. Le SG comporte un contrôleur de faible puissance, des convertisseurs numérique-analogiques (DAC) opérant en mode courant, générateurs multi-forme d’ondes et miroirs de courants alimentés sous 1.2 et 3.3V se servant pour l’interface entre les deux technologies utilisées. Le courant de stimulation du SG varie entre 2.32 et 220μA pour chaque canal. La deuxième puce (pilote de microélectrodes (MED)), une interface entre le SG et de l’arrangement de microélectrodes (MEA), fournit quatre niveaux différents de courant avec la valeur maximale de 400μA par entrée et 100μA par canal de sortie simultanément pour 8 à 16 sites de stimulation à travers les microélectrodes, connectés soit en configuration bipolaire ou monopolaire. Cette étage de sortie est hautement configurable et capable de délivrer une tension élevée pour satisfaire les conditions de l’interface à travers l’impédance de IET par rapport aux systèmes précédemment rapportés. Les valeurs nominales de plus grandes tensions d’alimentation sont de ±10V. La sortie de tension mesurée est conformément 10V/phase (anodique ou cathodique) pour les tensions d’alimentation spécifiées. L’incrémentation de tensions d’alimentation à ±13V permet de produire un courant de stimulation de 220μA par canal de sortie permettant d’élever la tension de sortie jusqu’au 20V par phase. Cet étage de sortie regroupe un commutateur haute tension pour interfacer une matrice des miroirs de courant (3.3V /20V), un registre à décalage de 32-bits à entrée sérielle, sortie parallèle, et un circuit dédié pour bloquer des états interdits.----------ABSTRACT The general objective of this research project is the design, implementation and validation of an implantable wireless intracortical interface in advanced CMOS technology to aid the visually impaired people. The major challenges in this research are to meet the required highvoltage compliance across electrode-tissue interface (ETI), increase lexibility in multichannel microstimulation and monitoring, minimize power budget for an implantable biomedical device, reduce the implant size, and enhance the data rate in wireless transmission. Therefore, we present in this thesis a multi-chip intracortical microstimulation system based on a novel architecture for wireless data and power transmission comprising inductive and capacitive couplings. The first chip is an energy-efficient stimuli generator (SG) and the second one is a highimpedance microelectrode array driver output-stage. The 4-channel stimuli-generator produces rectangular, half-sine (HS), plateau-sine (PS), and other types of energy-efficient current pulse. The SG is featured with low-power controller, current mode source- and sinkdigital- to-analog converters (DACs), multi-waveform generators, and 1.2V/3.3V interface current mirrors. The stimulation current per channel of the SG ranges from 2.32 to 220μA per channel. The second chip (microelectrode driver (MED)), an interface between the SG and the microelectrode array (MEA), supplies four different current levels with the maximum value of 400μA per input and 100μA per output channel. These currents can be delivered simultaneously to 8 to 16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. This output stage is highly-configurable and able to deliver higher compliance voltage across ETI impedance compared to previously reported designs. The nominal values of largest supply voltages are ±10V. The measured output compliance voltage is 10V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13V allows 220μA stimulation current per output channel enhancing the output compliance voltage up to 20V per phase. This output-stage is featured with a high-voltage switch-matrix, 3.3V/20V current mirrors, an on-chip 32-bit serial-in parallel-out shift register, and the forbidden state logic building blocks. The SG and MED chips have been designed and fabricated in IBM 0.13μm CMOS and Teledyne DALSA 0.8μm 5V/20V CMOS/DMOS technologies with silicon areas occupied by them 1.75 x 1.75mm2 and 4 x 4mm2 respectively. The measured DC power budgets consumed by low-and mid-voltage microchips are 2.56 and 2.1mW consecutively

    Caractérisation de contacts électrodes-tissus pour les stimulateurs neuro-musculaires implantables

    Get PDF
    Fondements de la stimulation nerveuse -- Organisation structurelle du système nerveux -- Activité électrique des neurones -- Le processus sensoriel -- La fonction motrice du système nerveux -- Réhabilitation par stimulation électrique -- Les électrodes et leur contact avec les tissus biologiques -- Différentes classes d'électrodes -- Le contact électrode-tissus -- Critères d'évaluation d'une électrode -- Techniques de caractérisation in vivo du contact électrode-tissus -- Mesure d'impédance -- Contrôle de la tension d'électrode -- Méthodes impulsionnelles -- Estimation de la densité de charge par phase et du désiquilibre de charge -- Autres techniques de caractérisation -- Conception d'une interface dédiée -- "A versatile electrodes-tissues contact characterization method for reliable implantable stimulation" -- Compléments sur l'amplificateur opérationnel -- Compléments sur la cellule GM -- Bilan des travaux effectués -- Prototype réalisé avec des composants discrets -- Interface dédiée à un stimulateur urinaire : puce ICDPMTEL -- Interface dédiée à un stimulateur intracortical : puce ICDPMIMC -- Techniques d'interconnexion d'un implant à multi-électrodes

    Digital ADCs and ultra-wideband RF circuits for energy constrained wireless applications by Denis Clarke Daly.

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 173-183).Ongoing advances in semiconductor technology have enabled a multitude of portable, low power devices like cellular phones and wireless sensors. Most recently, as transistor device geometries reach the nanometer scale, transistor characteristics have changed so dramatically that many traditional circuits and architectures are no longer optimal and/or feasible. As a solution, much research has focused on developing 'highly digital' circuits and architectures that are tolerant of the increased leakage, variation and degraded voltage headrooms associated with advanced CMOS processes. This thesis presents several highly digital, mixed-signal circuits and architectures designed for energy constrained wireless applications. First, as a case study, a highly digital, voltage scalable flash ADC is presented. The flash ADC, implemented in 0.18 [mu]m CMOS, leverages redundancy and calibration to achieve robust operation at supply voltages from 0.2 V to 0.9 V. Next, the thesis expands in scope to describe a pulsed, noncoherent ultra-wideband transceiver chipset, implemented in 90 nm CMOS and operating in the 3-to-5 GHz band. The all-digital transmitter employs capacitive combining and pulse shaping in the power amplifier to meet the FCC spectral mask without any off-chip filters. The noncoherent receiver system-on-chip achieves both energy efficiency and high performance by employing simple amplifier and ADC structures combined with extensive digital calibration. Finally, the transceiver chipset is integrated in a complete system for wireless insect flight control.(cont.) Through the use of a flexible PCB and 3D die stacking, the total weight of the electronics is kept to 1 g, within the carrying capacity of an adult Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel is demonstrated.Ph.D

    An Implantable Stimulator for Selective Stimulation of Nerves

    Get PDF
    Acute experimentation performed at many centres over the last twenty years has shown techniques which allow small neurones to be stimulated without large, the reverse of the normal recruitment order usually encountered during electrical stimulation; one-way excitation of neurones; and excitation of only a region of a nerve. These techniques should improve neural prosthesis by, for example: avoiding pain during stimulation and requiring electrode sites and therefore fewer incisions. To enable chronic clinical experiments of these advanced methods, there is a need for a specialised chronically-implantable stimulator, which can control either dipolar, tripolar or pentapolar nerve cuff electrodes. This thesis is concerned with the design and development of such a stimulator and, in particular, a fully customised analogue integrated circuit that converts incoming digital words into corresponding stimulation currents. A binary word is transmitted to the implant, which defines the current waveform parameters for the electrodes. This word is loaded into a shift register at the input. Part of the word is presented to a digital to analogue converter, to specify stimulation amplitude, and a pulse generator, which generates either a quasi-trapezoidal, or a square shaped stimulation waveforms. Four novel low offset linear transconductors provide the stimulation currents that are switched to the desired outputs. The charge balancing of the stimulation waveform is realised by a very long time-constant switched capacitor integrator. The major difficulties in the design of the analogue full custom IC proved to be the linear transconductor stages and the integrator. Results for the test ICs are presented and the design of a complete stimulator system is described

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Small business innovation research program solicitation: Closing date July 16, 1990

    Get PDF
    This is the eighth annual solicitation by NASA addressed to small business firms, inviting them to submit proposals for research, or research and development, activities in some of the science and engineering areas of interest to NASA. The solicitation describes the Small Business Innovative Research (SBIR) program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the technical topics and subtopics for which SBIR proposals are solicited. These cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired

    Neurostimulateur hautement intégré et nouvelle stratégie de stimulation pour améliorer la miction chez les paraplégiques

    Get PDF
    RÉSUMÉ Une lésion de la moelle épinière est un problème dévastateur médicalement et socialement. Pour la population des États-Unis seulement, il y a près de 10 000 nouveaux cas chaque année. A cause des nombreux types de lésions possibles, divers degrés de dysfonctionnement du bas appareil urinaire peuvent en découler. Une lésion est dite complète lors d’une perte totale des fonctions sensorielles et motrices volontaires en dessous du niveau de la lésion. Une lésion incomplète implique que certaines activités sensorielles et/ou motrices soient encore présentes. Si la lésion se produit au dessus du cône médullaire, la vessie développera une hyperréflexie qui se manifeste par des contractions réflexes non-inhibées. Ces contractions peuvent être accompagnées d’une augmentation de l’activité du sphincter externe. Par conséquent, cela mène à un état d’obstruction fonctionnelle de la vessie, qui induit une forte pression intravésicale à chacune des contractions réflexes et qui peut potentiellement endommager le haut appareil urinaire. Dans ce contexte, la neurostimulation est l'une des techniques les plus prometteuses pour la réhabilitation de la vessie chez les patients ayant subi une lésion de la moelle épinière. Le seul neurostimulateur implantable commercialisé, ciblant l'amélioration de la miction et ayant obtenu des résultats satisfaisants, nécessite une rhizotomie (section de certains nerfs) afin de réduire la dyssynergie entre la vessie et le sphincter. Cependant, la rhizotomie est irréversible et peut abolir les réflexes sexuels, de défécation ainsi que les sensations sacrales si encore présents dans le cas de lésions incomplètes. Afin d'éviter la rhizotomie, nous proposons une nouvelle stratégie de stimulation multi-site appliquée aux racines sacrées, et basée sur le blocage de la conduction des nerfs à l'aide d'une stimulation à haute fréquence comme alternative à la rhizotomie. Cette approche permettrait une meilleure miction en augmentant sélectivement la contraction de la vessie et en diminuant la dyssynergie. Huit expériences en phase aigüe ont étés menées sur des chiens pour vérifier la réponse de la vessie et du sphincter urétral externe à la stratégie de stimulation proposée. Le blocage à haute-fréquence (1 kHz) combiné à la stimulation basse-fréquence (30 Hz), a augmenté la différence de pression intra-vésicale/intra-urétrale moyenne jusqu'à 53 cmH2O et a réduit la pression intra-urétrale moyenne jusqu'à hauteur de 86 % relativement au niveau de référence. Dans l’objectif de tester la stratégie de neurostimulation proposée avec des expériences animales en phase chronique, un dispositif de neurostimulation implantable est requis. Un prototype discret implémentant cette stratégie de stimulation a été réalisé en utilisant uniquement des composants discrets disponibles commercialement. Ce prototype est capable de générer des impulsions à une fréquence aussi basse que 18 Hz tout en générant simultanément une forme d’onde alternative à une fréquence aussi haute que 8.6 kHz, et ce sur de multiples canaux. Lorsque tous les étages de stimulation et leurs différentes sorties sont activés avec des fréquences d’impulsions (2 mA, 217 μs) et de sinusoïdes de 30 Hz et 1 kHz respectivement, la consommation de puissance totale est autour de 4.5 mA (rms). Avec 50 mW de puissance inductive disponible par exemple et 4.5 mA de consommation de courant, le régulateur haute-tension peut être réglé à 10 V permettant ainsi une stimulation de 2 mA avec une impédance nerf-électrode de 4.4 kΩ. Le nombre effectif de sorties activées et le maximum réalisable des paramètres de stimulation sont limités par l’énergie disponible fournie par le lien inductif et l’impédance des interfaces nerf-électrode. Cependant, une plus grande intégration du neurostimulateur devient de plus en plus nécessaire à des fins de miniaturisation, de réduction de consommation de puissance, et d’augmentation du nombre de canaux de stimulation. Comme première étape vers une intégration totale, nous présentons la conception d’un neurostimulateur hautement intégré et qui peut être assemblé sur un circuit imprimé de 21 mm de diamètre. Le prototype est basé sur trois circuits intégrés, dédiés et fabriqués en technologie CMOS haute-tension, ainsi qu’un FPGA miniature à faible puissance et disponible commercialement. En utilisant une approche basée sur un abaisseur de tension, où la tension induite est laissée libre jusqu’à 20 V, l’étage d’entrée de récupération de puissance inductive et de données est totalement intégré.----------ABSTRACT Spinal cord injury (SCI) is a devastating condition medically and socially. For the population of USA only, the incidence is around 10 000 new cases per year. SCI leads to different degrees of dysfunction of the lower urinary tract due to a large variety of possible lesions. With a complete lesion, there is a complete loss of sensory and motor control below the level of lesion. An incomplete lesion implies that some sensory and/or motor activity is still present. Most patients with suprasacral SCI suffer from detrusor over-activity (DO) and detrusor sphincter dyssynergia (DSD). DSD leads to high intravesical pressure, high residual urine, urinary tract infection, and deterioration of the upper urinary tract. In this context, neurostimulation is one of the most promising techniques for bladder rehabilitation in SCI patients. The only commercialized implantable neurostimulator aiming for improved micturition and having obtained satisfactory results requires rhizotomy to reduce DSD. However, rhizotomy is irreversible and may abolish sexual and defecation reflexes as well as sacral sensations, if still present in case of incomplete SCI. In order to avoid rhizotomy, we propose a new multisite stimulation strategy applied to sacral roots, and based on nerve conduction blockade using high-frequency stimulation as an alternative to rhizotomy. This approach would allow a better micturition by increasing bladder contraction selectively and decreasing dyssynergia. Eight acute dog experiments were carried out to verify the bladder and the external urethral sphincter responses to the proposed stimulation strategy. High-frequency blockade (1 kHz) combined with low-frequency stimulation (30 Hz) increased the average intravesical-intraurethral pressure difference up to 53 cmH2O and reduced the average intraurethral pressure with respect to baseline by up to 86 %. To test the proposed neurostimulation strategy during chronic animal experiments, an implantable neurostimulateur is required. A discrete prototype implementing the proposed stimulation strategy has been designed using commercially available discrete components. This prototype is capable of generating a low frequency pulse waveform as low as 18 Hz with a simultaneous high frequency alternating waveform as high as 8.6 kHz, and that over different and multiple channels
    corecore