13,711 research outputs found

    Sustainable design for offshore oil and gas platforms : a conceptual framework for topside facilities projects

    Get PDF
    Offshore oil and gas operations are growing rapidly with the high demand for energy and oil being the most important source of energy. Many studies indicate that discovery of future oil will be based more in offshore than onshore areas. However, vast offshore facilities and activities create negative environmental and social impacts, as well as consequences ranging from air and water pollution to health and safety issues. Therefore, sustainability in offshore operation and design is a major challenge in the offshore industry. A framework for stakeholders in the offshore industry which can be used as an effective tool to evaluate and assess the design and materials selection, considering sustainability, at the conceptual stage of a project has been developed. The literature shows that a limited number of researches have focused on the sustainability of topside facilities for offshore platforms. Moreover, it was difficult to find a complete sustainable framework that considers the three main aspects of sustainability (environmental, social and economic) in offshore engineering design. Therefore, this research fills the gap in the existing knowledge of the offshore industry by contributing to the following area: developing a decision framework for topside projects in terms of materials selection and sustainable design. In order to achieve this aim, a qualitative approach was adopted to develop and identify the factors affecting sustainable design and materials selection for topside offshore fixed platforms. The methodology has been conducted in two parts, comprising: (1) an exhaustive literature review to determine the sustainability criteria, as well as technical and engineering aspects; and (2) semi-structured face-to-face interviews, which included both open ended and closed ended questions. The findings from the semi-structured interviews highlighted a consensus among all the interviewees that there is a need for a sustainable framework for engineering design and materials selection for topside facilities. Moreover, most of the interviewees have not experienced such a framework. This supports the research gap: there is no complete sustainable framework available for engineering design. The framework developed here was validated and evaluated by industry professionals through case application and scoring model approaches. The results indicated that the framework and its components are applicable and effective for offshore topside facility projects

    Precursor Analysis for Offshore Oil and Gas Drilling: From Prescriptive to Risk-Informed Regulation

    Get PDF
    The Oil Spill Commission’s chartered mission—to “develop options to guard against … any oil spills associated with offshore drilling in the future” (National Commission 2010)—presents a major challenge: how to reduce the risk of low-frequency oil spill events, and especially high-consequence events like the Deepwater Horizon accident, when historical experience contains few oil spills of material scale and none approaching the significance of the Deepwater Horizon. In this paper, we consider precursor analysis as an answer to this challenge, addressing first its development and use in nuclear reactor regulation and then its applicability to offshore oil and gas drilling. We find that the nature of offshore drilling risks, the operating information obtainable by the regulator, and the learning curve provided by 30 years of nuclear experience make precursor analysis a promising option available to the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) to bring cost-effective, risk-informed oversight to bear on the threat of catastrophic oil spills.catastrophic oil spills, quantitative risk analysis, risk-informed regulation

    Fidelity of computational modelling of offshore jacket platforms

    Get PDF
    The development of oil and gas exploitation offshore has a history of about half a century. Many platforms have been built since to facilitate the production of hydrocarbons oil and gas, of which fixed offshore jacket type structures are the most commonly adopted rigs for shallow water depths. The present paper focuses on the modelling of a 4-legged X-braced jacket type platform, representative of a typical fixed platform in the North Sea using nonlinear finite element analysis. Normally, offshore platforms are conservatively designed using linear-elastic models to determine the effects of applied actions. The nonlinear effects of joint flexibility, piled foundations and geometrical imperfections on the platform behaviour are investigated in this paper. Joint flexibility is studied by modelling the jacket using beam elements and introducing rigid or flexible joints. A hybrid model, with the critically loaded leg and connected joints built using shell elements, is applied for the investigation of localised effects on increasing joint flexibility. The soil-pile interaction is modelled implicitly using sets of decoupled springs distributed along the piles. The geometrical imperfections are introduced in the compression legs of the jacket. The imperfect leg shapes are generated based on the failure modes of the platform. The platform is loaded by operational and environmental loads. The environmental loads are gradually increased until platform failure occurs. Eight load cases are considered, where the environmental loads are applied in 4 end-on and 4 broadside directions. The findings of the paper indicate that incorporation of joint flexibility and piled foundation result in the reduction of platform yielding and ultimate strength. The piled foundation affects platform stiffness severely. The imperfections increase platform deformability in the elastic rage and lead to dramatic reduction of jacket base shear capacity

    Preliminary assessment of industrial needs for an advanced ocean technology

    Get PDF
    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed

    Arctic Standards: Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean

    Get PDF
    Oil spilled in Arctic waters would be particularly difficult to remove. Current technology has not been proved to effectively clean up oil when mixed with ice or when trapped under ice. An oil spill would have a profoundly adverse impact on the rich and complex ecosystem found nowhere else in the United States. The Arctic Ocean is home to bowhead, beluga, and gray whales; walruses; polar bears; and other magnificent marine mammals, as well as millions of migratory birds. A healthy ocean is important for these species and integral to the continuation of hunting and fishing traditions practiced by Alaska Native communities for thousands of years.To aid the United States in its efforts to modernize Arctic technology and equipment standards, this report examines the fierce Arctic conditions in which offshore oil and gas operations could take place and then offers a summary of key recommendations for the Interior Department to consider as it develops world-class, Arctic-specific regulatory standards for these activities. Pew's recommendations call for improved technology,equipment, and procedural requirements that match the challenging conditions in the Arctic and for full public participation and transparency throughout the decision-making process. Pew is not opposed to offshore drilling, but a balance must be achieved between responsible energy development and protection of the environment.It is essential that appropriate standards be in place for safety and for oil spill prevention and response in this extreme, remote, and vulnerable ecosystem. This report recommends updating regulations to include Arctic specific requirements and codifying temporary guidance into regulation. The appendixes to this report provide substantially more detail on the report's recommendations, including technical background documentation and additional referenced materials. Please refer to the full set of appendixes for a complete set of recommendations. This report and its appendixes offer guidelines for responsible hydrocarbon development in the U.S. Arctic Ocean

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Managing Environmental, Health, and Safety Risks: A Comparative Assessment of the Minerals Management Service and Other Agencies

    Get PDF
    This study compares and contrasts regulatory and related practices—in particular, regulatory decisionmaking, risk assessment and planning processes, inspection and compliance, and organization structure, budgets, and training—of the Minerals Management Service (MMS, now the Bureau of Ocean Energy Management, Regulation, and Enforcement, or BOEMRE) with those of the Federal Aviation Administration (FAA) and the Environmental Protection Agency (EPA). Comparing MMS practices with those of other federal agencies that also manage low-probability but high-consequence environmental risks provides a basis for identifying opportunities for enhancing regulatory capacity and safety performance in managing deepwater energy exploration and production. Our research finds important differences in processes for setting standards; peer review contribution to the rulemaking process; establishment of tolerable risk thresholds; and training of key staff. The paper concludes with several recommendations for how various EPA and FAA practices might be modified and used at BOEMRE to strengthen its regulatory and risk management processes.Minerals Management Service, Federal Aviation Administration, Environmental Protection Agency, risk management
    corecore