874 research outputs found

    Machine Learning Methods for Medical and Biological Image Computing

    Get PDF
    Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries in neuroscience. In this thesis, I propose computational methods using high-level features for automated analysis of brain images at different levels. At the brain function level, I develop a deep learning based framework for completing and integrating multi-modality neuroimaging data, which increases the diagnosis accuracy for Alzheimer’s disease. At the cellular level, I propose to use three dimensional convolutional neural networks (CNNs) for segmenting the volumetric neuronal images, which improves the performance of digital reconstruction of neuron structures. I design a novel CNN architecture such that the model training and testing image prediction can be implemented in an end-to-end manner. At the molecular level, I build a voxel CNN classifier to capture discriminative features of the input along three spatial dimensions, which facilitate the identification of secondary structures of proteins from electron microscopy im-ages. In order to classify genes specifically expressed in different brain cell-type, I propose to use invariant image feature descriptors to capture local gene expression information from cellular-resolution in situ hybridization images. I build image-level representations by applying regularized learning and vector quantization on generated image descriptors. The developed computational methods in this dissertation are evaluated using images from medical and biological experiments in comparison with baseline methods. Experimental results demonstrate that the developed representations, formulations, and algorithms are effective and efficient in learning from brain imaging data

    Real-time people tracking in a camera network

    Get PDF
    Visual tracking is a fundamental key to the recognition and analysis of human behaviour. In this thesis we present an approach to track several subjects using multiple cameras in real time. The tracking framework employs a numerical Bayesian estimator, also known as a particle lter, which has been developed for parallel implementation on a Graphics Processing Unit (GPU). In order to integrate multiple cameras into a single tracking unit we represent the human body by a parametric ellipsoid in a 3D world. The elliptical boundary can be projected rapidly, several hundred times per subject per frame, onto any image for comparison with the image data within a likelihood model. Adding variables to encode visibility and persistence into the state vector, we tackle the problems of distraction and short-period occlusion. However, subjects may also disappear for longer periods due to blind spots between cameras elds of view. To recognise a desired subject after such a long-period, we add coloured texture to the ellipsoid surface, which is learnt and retained during the tracking process. This texture signature improves the recall rate from 60% to 70-80% when compared to state only data association. Compared to a standard Central Processing Unit (CPU) implementation, there is a signi cant speed-up ratio

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Design and Development of Robotic Part Assembly System under Vision Guidance

    Get PDF
    Robots are widely used for part assembly across manufacturing industries to attain high productivity through automation. The automated mechanical part assembly system contributes a major share in production process. An appropriate vision guided robotic assembly system further minimizes the lead time and improve quality of the end product by suitable object detection methods and robot control strategies. An approach is made for the development of robotic part assembly system with the aid of industrial vision system. This approach is accomplished mainly in three phases. The first phase of research is mainly focused on feature extraction and object detection techniques. A hybrid edge detection method is developed by combining both fuzzy inference rule and wavelet transformation. The performance of this edge detector is quantitatively analysed and compared with widely used edge detectors like Canny, Sobel, Prewitt, mathematical morphology based, Robert, Laplacian of Gaussian and wavelet transformation based. A comparative study is performed for choosing a suitable corner detection method. The corner detection technique used in the study are curvature scale space, Wang-Brady and Harris method. The successful implementation of vision guided robotic system is dependent on the system configuration like eye-in-hand or eye-to-hand. In this configuration, there may be a case that the captured images of the parts is corrupted by geometric transformation such as scaling, rotation, translation and blurring due to camera or robot motion. Considering such issue, an image reconstruction method is proposed by using orthogonal Zernike moment invariants. The suggested method uses a selection process of moment order to reconstruct the affected image. This enables the object detection method efficient. In the second phase, the proposed system is developed by integrating the vision system and robot system. The proposed feature extraction and object detection methods are tested and found efficient for the purpose. In the third stage, robot navigation based on visual feedback are proposed. In the control scheme, general moment invariants, Legendre moment and Zernike moment invariants are used. The selection of best combination of visual features are performed by measuring the hamming distance between all possible combinations of visual features. This results in finding the best combination that makes the image based visual servoing control efficient. An indirect method is employed in determining the moment invariants for Legendre moment and Zernike moment. These moments are used as they are robust to noise. The control laws, based on these three global feature of image, perform efficiently to navigate the robot in the desire environment

    Robust stability assessment for future power systems

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.Cataloged from PDF version of thesis. "Due to the condition of the original material, there are unavoidable flaws in this reproduction. Some pages in the original document contain text that is illegible"--Disclaimer Notice page.Includes bibliographical references (pages 119-128).Loss of stability in electrical power systems may eventually lead to blackouts which, despite being rare, are extremely costly. However, ensuring system stability is a non-trivial task for several reasons. First, power grids, by nature, are complex nonlinear dynamical systems, so assessing and maintaining system stability is challenging mainly due to the co-existence of multiple equilibria and the lack of global stability. Second, the systems are subject to various sources of uncertainties. For example, the renewable energy injections may vary depending on the weather conditions. Unfortunately, existing security assessment may not be sufficient to verify system stability in the presence of such uncertainties. This thesis focuses on new scalable approaches for robust stability assessment applicable to three main types of stability, i.e., long-term voltage, transient, and small-signal stability. In the first part of this thesis, I develop a novel computationally tractable technique for constructing Optimal Power Flow (OPF) feasibility (convex) subsets. For any inner point of the subset, the power flow problem is guaranteed to have a feasible solution which satisfies all the operational constraints considered in the corresponding OPF. This inner approximation technique is developed based on Brouwer's fixed point theorem as the existence of a solution can be verified through a self-mapping condition. The self-mapping condition along with other operational constraints are incorporated in an optimization problem to find the largest feasible subsets. Such an optimization problem is nonlinear, but any feasible solution will correspond to a valid OPF feasibility estimation. Simulation results tested on several IEEE test cases up to 300 buses show that the estimation covers a substantial fraction of the true feasible set. Next, I introduce another inner approximation technique for estimating an attraction domain of a post-fault equilibrium based on contraction analysis. In particular, I construct a contraction region where the initial conditions are "forgotten", i.e., all trajectories starting from inside this region will exponentially converge to each other. An attraction basin is constructed by inscribing the largest ball in the contraction region. To verify contraction of a Differential-Algebraic Equation (DAE) system, I also show that one can rely on the analysis of extended virtual systems which are reducible to the original one. Moreover, the Jacobians of the synthetic systems can always be expressed in a linear form of state variables because any polynomial system has a quadratic representation. This makes the synthetic system analysis more appropriate for contraction region estimation in a large scale. In the final part of the thesis, I focus on small-signal stability assessment under load dynamic uncertainties. After introducing a generic impedance-based load model which can capture the uncertainty, I propose a new robust small signal (RSS) stability criterion. Semidefinite programming is used to find a structured Lyapunov matrix, and if it exists, the system is provably RSS stable. An important application of the criterion is to characterize operating regions which are safe from Hopf bifurcations. The robust stability assessment techniques developed in this thesis primarily address the needs of a system operator in electrical power systems. The results, however, can be naturally extended to other nonlinear dynamical systems that arise in different fields such as biology, biomedicine, economics, neuron networks, and optimization. As the robust assessment is based on sufficient conditions for stability, there is still room for development on reducing the inevitable conservatism. For example, for OPF feasibility region estimation, an important open question considers what tighter bounds on the nonlinear residual terms one can use instead of box type bounds. Also, for attraction basin problem, finding the optimal norms and metrics which result in the largest contraction domain is an interesting potential research question.by Hung Dinh Nguyen.Ph. D

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    corecore