1,919 research outputs found

    A synergistic wearable health monitoring system using cellular network technology

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2017This thesis presents a synergistic approach to healthcare applications by integrating a wearable health monitoring system into a smart home system. By exploiting synergy within each system and between these two systems, this thesis shows that the efficiency of the health care can be increased while providing the added advantage of utmost user-friendly environment. Initially, a wearable health monitoring prototype system was developed for vital sign data collection and processing. The developed system used biosensor integration to distinguish amongst multiple physical activities and to compare the variations in physiological conditions according to physical activity of the user. Afterward, system learning techniques were established for accomplishing the scalability of the health monitoring system. The resulting system is able to monitor different users without the need for explicitly changing the thresholds for the individual user. The health monitoring was further improved through integration with the smart home system to exploit synergy between various physiological sensors and to reduce false alarms generated by the system. A cellular communication interface was developed for transmitting the collected data to a remote caregiver and also to store the time-stamped data on the online web server. A web interface was developed to allow monitoring user's health and activity data, along with their surrounding environment

    A cyber-physical system for smart healthcare

    Get PDF
    Abstract: The increasing number of patients in hospitals is becoming a serious concern in most countries owing to the significantly associated implications for resources such as staff and budget shortages. This problem has prompted researchers to investigate low-cost alternative systems that may assist medical staff with monitoring and caring for patients. In view of the recent widespread availability of cost-effective internet of things (IoT) technologies such as ZigBee, WiFi and sensors integrated into cyber-physical systems, there is the potential for deployment as different topologies in applications such as patient diagnoses and remote patient monitoring...M.Tech. (Electrical and Electronic Engineering Technology

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    Wearable devices for health remote monitor system

    Get PDF
    It is feasible to see how communication and information technology have advanced at a rapid pace in today’s world. The introduction and emergence of wearable technology is one aspect that contributes to this advancement and has the potential to be an innovative solution to healthcare challenges, since it may be used for illness prevention and maintenance, such as physical monitoring, as well as patient management. To address some of the healthcare challenges, this research thesis provides a research methodology, research questions, and hypotheses for constructing an health remote monitoring system with alerts and continuous monitoring employing wearable devices capable of collecting biometric data on human health. The concept was then proven by the development of a prototype using wearable devices connected to a microcontroller, which transmits its data via MQTT Protocol to a Node-RED powered dashboard that handles health metrics monitoring and where all monitoring performed, and alarms generated can be viewed in real-time. All this data is delivered to a MongoDB database for further analysis and visualization. To demonstrate the effectiveness and capabilities of this prototype, it was used in the real world and the results were acquired from two distinct users. The results were very favorable and conclusive, demonstrating that the created prototype was satisfactory in providing data to support the developed hypotheses and research questions.É possível observar como as tecnologias de comunicação e informação avançaram a um ritmo bastante acelerado nos dias de hoje. A introdução e aparecimento da tecnologia ”wearable” representa um aspeto que contribui para este progresso e tem o potencial de ser uma solução inovadora para os desafios dos cuidados de saúde, uma vez que pode ser utilizada para a prevenção e manutenção de doenças, tais como a monitorização física, bem como para a gestão de pacientes. Para abordar alguns dos desafios dos cuidados de saúde, esta tese de investigação propõe uma metodologia de investigação, questões de investigação, e hipóteses para o desenvolvimento de um sistema inteligente de monitorização da saúde com alertas e monitorização contínua utilizando wearable devices capazes de recolher dados biométricos de seres humanos. O conceito foi então provado pelo desenvolvimento de um protótipo utilizando wearable devices conectados a um microcontrolador, que transmite os seus dados através do Protocolo MQTT a um painel de instrumentos alimentado por o Node-RED que lida com a monitorização de métricas de saúde e onde toda a monitorização executada, e os alarmes gerados, podem ser visualizados em tempo real e depois entregues numa base de dados MongoDB para posterior análise e visualização. Para demonstrar a eficácia deste protótipo, este foi implementado no mundo real onde foram adquiridos vários resultados através da utilização de dois utilizadores distintos. Os resultados foram bastante favoráveis e conclusivos, demonstrando que o protótipo criado foi satisfatório no fornecimento de dados para apoiar as hipóteses e questões de investigação desenvolvidas

    SENSOR-BASED WIRELESS WEARABLE SYSTEMS FOR HEALTHCARE AND FALLS MONITORING

    Full text link

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease
    • …
    corecore