71,066 research outputs found

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl

    Air Traffic Management Safety Challenges

    No full text
    The primary goal of the Air Traffic Management (ATM) system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. Safety analysts and aviation decision-makers have to make safety assessments based on statistically incomplete evidence. If future risks cannot be estimated with precision, then how is safety to be assured with traffic growth and operational/technical changes? What are the design implications for the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? ATM accident precursors arise from (eg) pilot/controller workload, miscommunication, and lack of upto- date information. Can these accident precursors confidently be ‘designed out’ by (eg) better system knowledge across ATM participants, automatic safety checks, and machine rather than voice communication? Future potentially hazardous situations could be as ‘messy’ in system terms as the Überlingen mid-air collision. Are ATM safety regulation policies fit for purpose: is it more and more difficult to innovate, to introduce new technologies and novel operational concepts? Must regulators be more active, eg more inspections and monitoring of real operational and organisational practices

    Air Traffic Safety: continued evolution or a new Paradigm.

    Get PDF
    The context here is Transport Risk Management. Is the philosophy of Air Traffic Safety different from other modes of transport? – yes, in many ways, it is. The focus is on Air Traffic Management (ATM), covering (eg) air traffic control and airspace structures, which is the part of the aviation system that is most likely to be developed through new paradigms. The primary goal of the ATM system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. What are the past and current methodologies for ATM risk assessment; and will they work effectively for the kinds of future systems that people are now imagining and planning? The title contrasts ‘Continued Evolution’ and a ‘New Paradigm’. How will system designers/operators assure safety with traffic growth and operational/technical changes that are more than continued evolution from the current system? What are the design implications for ‘new paradigms’, such as the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? Achieving and proving safety for NextGen and SESAR is an enormously tough challenge. For example, it will need to cover system resilience, human/automation issues, software/hardware performance/ground/air protection systems. There will be a need for confidence building programmes regarding system design/resilience, eg Human-in-the-Loop simulations with ‘seeded errors’

    Mobile Interface for a Smart Wheelchair

    Get PDF
    Smart wheelchairs are designed for severely motor impaired people that have difficulties to drive standard -manual or electric poweredwheelchairs. Their goal is to automate driving tasks as much as possible in order to minimize user intervention. Nevertheless, human involvement is still necessary to maintain high level task control. Therefore in the interface design it is necessary to take into account the restrictions imposed by the system (mobile and small), by the type of users (people with severe motor restrictions) and by the task (to select a destination among a number of choices in a structured environment). This paper describes the structure of an adaptive mobile interface for smart wheelchairs that is driven by the context.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TER96-2056-C02-0

    POTs: Protective Optimization Technologies

    Full text link
    Algorithmic fairness aims to address the economic, moral, social, and political impact that digital systems have on populations through solutions that can be applied by service providers. Fairness frameworks do so, in part, by mapping these problems to a narrow definition and assuming the service providers can be trusted to deploy countermeasures. Not surprisingly, these decisions limit fairness frameworks' ability to capture a variety of harms caused by systems. We characterize fairness limitations using concepts from requirements engineering and from social sciences. We show that the focus on algorithms' inputs and outputs misses harms that arise from systems interacting with the world; that the focus on bias and discrimination omits broader harms on populations and their environments; and that relying on service providers excludes scenarios where they are not cooperative or intentionally adversarial. We propose Protective Optimization Technologies (POTs). POTs provide means for affected parties to address the negative impacts of systems in the environment, expanding avenues for political contestation. POTs intervene from outside the system, do not require service providers to cooperate, and can serve to correct, shift, or expose harms that systems impose on populations and their environments. We illustrate the potential and limitations of POTs in two case studies: countering road congestion caused by traffic-beating applications, and recalibrating credit scoring for loan applicants.Comment: Appears in Conference on Fairness, Accountability, and Transparency (FAT* 2020). Bogdan Kulynych and Rebekah Overdorf contributed equally to this work. Version v1/v2 by Seda G\"urses, Rebekah Overdorf, and Ero Balsa was presented at HotPETS 2018 and at PiMLAI 201

    Spatial ability, urban wayfinding and location-based services:a review and first results

    Get PDF
    Location-Based Services (LBS) are a new industry at the core of which are GISand spatial databases. With increasing mobility of individuals, the anticipatedavailability of broadband communications for mobile devices and growingvolumes of location specific information available in databases there willinevitably be an increase in demand for services providing location relatedinformation to people on the move. New Information and CommunicationTechnologies (NICTs) are providing enhanced possibilities for navigating ?smartcities?. Urban environments, meanwhile, have increasing spatial complexity.Navigating urban environments is becoming an important issue. The time is ripefor a re-appraisal of urban wayfinding. This paper critically reviews the currentLBS applications and raises a series of questions with regard to LBS for urbanwayfinding. Research is being carried out to measure individuals? spatialability/awareness and their degree of preference for using LBS in wayfinding. Themethodology includes both the use of questionnaires and a virtual reality CAVE.Presented here are the results of the questionnaire survey which indicate therelationships between individuals? spatial ability, use of NICTs and modepreference for receiving wayfinding cues. Also discussed are our future researchdirections on LBS, particular on issues of urban wayfinding using NICTs

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Using a cognitive prosthesis to assist foodservice managerial decision-making

    Get PDF
    The artificial intelligence community has been notably unsuccessful in producing intelligent agents that think for themselves. However, there is an obvious need for increased information processing power in real life situations. An example of this can be witnessed in the training of a foodservice manager, who is expected to solve a wide variety of complex problems on a daily basis. This article explores the possibility of creating an intelligence aid, rather than an intelligence agent, to assist novice foodservice managers in making decisions that are congruent with a subject matter expert\u27s decision schema

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article
    • 

    corecore