7 research outputs found

    Design and Validation of a Bimanual Haptic Epidural Needle Insertion Simulator

    Full text link
    The case experience of anesthesiologists is one of the leading causes of accidental dural puncture and failed epidural - the most common complications of epidural analgesia. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition, and present a validation study conducted with 15 anesthesiologists of different competency levels from several hospitals in Israel. Our simulator emulates the forces applied on the epidural (Touhy) needle, held by one hand, and those applied on the Loss of Resistance (LOR) syringe, held by the second hand. The resistance is calculated based on a model of the Epidural region layers that is parameterized by the weight of the patient. We measured the movements of both haptic devices, and quantified the rate of results (success, failed epidurals and dural punctures), insertion strategies, and answers of participants to questionnaires about their perception of the realism of the simulation. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Good face and content validity were shown in experienced users' perception of the simulator as realistic and well-targeted. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.Comment: 12 pages, 11 figure

    Haptic feedback from human tissues of various stiffness and homogeneity

    Get PDF
    This work presents methods for haptic modelling of soft and hard tissue with varying stiffness. The model provides visualization of deformation and calculates force feedback during simulated epidural needle insertion. A spring-mass-damper (SMD) network is configured from magnetic resonance image (MRI) slices of patient’s lumbar region to represent varying stiffness throughout tissue structure. Reaction force is calculated from the SMD network and a haptic device is configured to produce a needle insertion simulation. The user can feel the changing forces as the needle is inserted through tissue layers and ligaments. Methods for calculating the force feedback at various depths of needle insertion are presented. Voxelization is used to fill ligament surface meshes with spring mass damper assemblies for simulated needle insertion into soft and hard tissues. Modelled vertebrae cannot be pierced by the needle. Graphs were produced during simulated needle insertions to compare the applied force to haptic reaction force. Preliminary saline pressure measurements during Tuohy epidural needle insertion are also used as a basis for forces generated in the simulation

    Improved methods for the assessment of surgical trainees

    Get PDF

    Effect of intravenous morphine bolus on respiratory drive in ICU patients

    Get PDF
    corecore