543 research outputs found

    Modeling & Analysis of Design Parameters for Portable Hand Orthoses to Assist Upper Motor Neuron Syndrome Impairments and Prototype Design

    Get PDF
    Wearable assistive robotics have the potential to address an unmet medical need of reducing disability in individuals with chronic hand impairments due to neurological trauma. Despite myriad prior works, few patients have seen the benefits of such devices. Following application experience with tendon-actuated soft robotic gloves and a collaborator\u27s orthosis with novel flat-spring actuators, we identified two common assumptions regarding hand orthosis design. The first was reliance on incomplete studies of grasping forces during activities of daily living as a basis for design criteria, leading to poor optimization. The second was a neglect of increases in muscle tone following neurological trauma, rendering most devices non-applicable to a large subset of the population. To address these gaps, we measured joint torques during activities of daily living with able-bodied subjects using dexterity representative of orthosis-aided motion. Next, we measured assistive torques needed to extend the fingers of individuals with increased flexor tone following TBI. Finally, we applied this knowledge to design a cable actuated orthosis for assisting finger extension, providing a basis for future work focused on an under-represented subgroup of patients

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF

    DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND REHABILITATION

    Get PDF
    The development of dynamic rehabilitation devices can be evaluated as a research fast-growing field. Indeed, robot-assisted therapy is an advanced new technology mainly in stroke rehabilitation. Although patients benefit from this enormous development of technology, including the presence of rehabilitation robots, the therapeutic field still suffering a lack in hand robotic rehabilitation devices. In this context, this work proposes a new design of a 3D printed hand exoskeleton for the stroke rehabilitation. Based on the EMG signals measured from the muscles responsible for the hand motion, the designed mechatronic system detects the intention of hand opening or hand closing from the stroked subject. Based on an embedded controller and five servomotors, the low cost robotic system is able to drive in real time three degrees of freedom (DOFs) for each finger. The real tests with stroked subjects showed that the designed hand exoskeleton architecture has a positive effect on the motion finger range and mainly in the hand ability to perform some simple tasks. The case studies showed a good recovery of the motor functions and consequently the developed system efficiency

    Design of a 4-DOF grounded exoskeletal robot for shoulder and elbow rehabilitation

    Get PDF
    The number of cerebrovascular and neuromuscular diseases is increasing in parallel with the rising average age of the world’s population. Since the shoulder anatomy is complex, the number of rehabilitation robots for shoulder movements is limited. This paper presents the mechanical design, control, and testing of 4 degrees of freedom (DOF) grounded upper limb exoskeletal robot. It is capable of four different therapeutic exercises (passive, active assistive, isotonic, and isometric). During the mechanical design, the forces to be exposed to the robot were determined and after the design, the system was tested with strength analysis. Also, a low-cost electromyograph device was developed and integrated into the system to measure muscular activation for feedback and instantaneously muscle activation control for the physiotherapist during the therapy. The system can be used for rehabilitation on the shoulder and elbow.  A PID controller for position-controlled exercises was developed. The test results were presented in terms of simulation and the real system for passive exercise. According to the test results, the developed system can perform the passive exercise and can be used for other therapeutic exercises as well

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users
    • …
    corecore