262 research outputs found

    Printed document integrity verification using barcode

    Get PDF
    Printed documents are still relevant in our daily life and information in it must be protected from threats and attacks such as forgery, falsification or unauthorized modification. Such threats make the document lose its integrity and authenticity. There are several techniques that have been proposed and used to ensure authenticity and originality of printed documents. But some of the techniques are not suitable for public use due to its complexity, hard to obtain special materials to secure the document and expensive. This paper discuss several techniques for printed document security such as watermarking and barcode as well as the usability of two dimensional barcode in document authentication and data compression with the barcode. A conceptual solution that are simple and efficient to secure the integrity and document sender's authenticity is proposed that uses two dimensional barcode to carry integrity and authenticity information in the document. The information stored in the barcode contains digital signature that provides sender's authenticity and hash value that can ensure the integrity of the printed document

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties

    A survey on security analysis of machine learning-oriented hardware and software intellectual property

    Get PDF
    Intellectual Property (IP) includes ideas, innovations, methodologies, works of authorship (viz., literary and artistic works), emblems, brands, images, etc. This property is intangible since it is pertinent to the human intellect. Therefore, IP entities are indisputably vulnerable to infringements and modifications without the owner’s consent. IP protection regulations have been deployed and are still in practice, including patents, copyrights, contracts, trademarks, trade secrets, etc., to address these challenges. Unfortunately, these protections are insufficient to keep IP entities from being changed or stolen without permission. As for this, some IPs require hardware IP protection mechanisms, and others require software IP protection techniques. To secure these IPs, researchers have explored the domain of Intellectual Property Protection (IPP) using different approaches. In this paper, we discuss the existing IP rights and concurrent breakthroughs in the field of IPP research; provide discussions on hardware IP and software IP attacks and defense techniques; summarize different applications of IP protection; and lastly, identify the challenges and future research prospects in hardware and software IP security

    Steganography Approach to Image Authentication Using Pulse Coupled Neural Network

    Get PDF
    This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work

    Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform

    No full text
    International audienceIn this work, a novel robust image hashing scheme for image authentication is proposed based on the combination of the quaternion discrete Fourier transform (QDFT) with the log-polar transform. QDFT offers a sound way to jointly deal with the three channels of color images. The key features of the present method rely on (i) the computation of a secondary image using a log-polar transform; and (ii) the extraction from this image of low frequency QDFT coefficients' magnitude. The final image hash is generated according to the correlation of these magnitude coefficients and is scrambled by a secret key to enhance the system security. Experiments were conducted in order to analyze and identify the most appropriate parameter values of the proposed method and also to compare its performance to some reference methods in terms of receiver operating characteristics curves. The results show that the proposed scheme offers a good sensitivity to image content alterations and is robust to the common content-preserving operations, and especially to large angle rotation operations

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Foreword and editorial - March issue

    Full text link

    Publicly Detectable Watermarking for Intellectual Property Authentication in VLSI Design

    Get PDF
    Highlighted with the newly released intellectual property (IP) protection white paper by VSI Alliance, the protection of virtual components or IPs in very large scale integration (VLSI) design has received a great deal of attention recently. Digital signature/watermark is one of the most promising solutions among the known protection mechanisms. It provides desirable proof of authorship without rendering the IP useless. However, it makes the watermark detection, which is as important as watermarking, an NP-hard problem. In fact, the tradeoff between hard-to-attack and easy-to-detect and the lack of efficient detection schemes are the major obstacles for digital signatures to thrive. In this paper, the authors propose a new watermarking method which allows the watermark to be publicly detected without losing its strength and security. The basic idea is to create a cryptographically strong pseudo-random watermark, embed it into the original problem as a special (which the authors call mutual exclusive) constraint, and make it public. The authors combine data integrity technique and the unique characteristics in the design of VLSI IPs such that adversaries will not gain any advantage from the public watermarking for forgery. This new technique is compatible with the existing constraint-based watermarking/fingerprinting techniques. The resulting public–private watermark maintains the strength of a watermark and provides easy detectability with little design overhead. The authors build the mathematical framework for this approach based on the concept of mutual exclusive constraints. They use popular VLSI CAD problems, namely technology mapping, partitioning, graph coloring, FPGA design, and Boolean satisfiability, to demonstrate the public watermark’s easy detectability, high credibility, low design overhead, and robustness
    • …
    corecore