690 research outputs found

    Silicon CMOS architecture for a spin-based quantum computer

    Full text link
    Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing \cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms \cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde2014, Muhonen2014, Veldhorst2014} give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based entirely on complementary metal-oxide-semiconductor (CMOS) technology, which is the basis for all modern processor chips. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin states of a single electron confined in a quantum dot, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout \cite{Colless2013}. This system, based entirely on available technology and existing components, is compatible with general surface code quantum error correction \cite{Terhal2015}, enabling large-scale universal quantum computation

    Classification using Dopant Network Processing Units

    Get PDF

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl
    • …
    corecore