742 research outputs found

    ํ•˜์ด๋“œ๋กœ์ ค ๊ธฐ๋ฐ˜์˜ ํ„ฐ์น˜ ์„ผ์‹ฑ๊ณผ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์ด์˜จ-์ „์ž ํ˜ผ์„ฑ ์žฅ์น˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2020. 2. ์˜ค๊ทœํ™˜.As the rise of ubiquitous computing and the Internet of Thing facilitate the frequent interaction between human and machines, the importance of human machine interfaces (HMI) has been emphasized. Despite recent advances in HMI, current devices based on metals or semiconductors are still limited in use due to mechanical mismatches with humans having soft skins and tissues. In this respect, hydrogels are promising alternative for conventional conductive materials. The hydrogels are polymer networks swollen with the water. The polymer networks enable the hydrogel to maintain their shape like a solid and to withstand deformation. The water in the hydrogel dissolves the ions, making the hydrogel ionic conductive. Thus, hydrogels with ions can be served as stretchable ionic conductors to transmit electrical signals and power even in the stretched state. However, there are also issues that arise because of the use of ions as charge carriers. Herein, I demonstrate how to solve the issues when using hydrogels and how to take advantage of their characteristics. Two ionic devices were developed and explored; a hydrogel touchpad that can stretch more than 1000% and a gel receiver that can receive electrical power wirelessly. In first part, highly stretchable and transparent touch panel consisting of hydrogels was explored. Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games. In second part, we have explored a wireless power transfer system using an ionic conductor as a power receiving parts. A number of implantable biomedical devices that require electric power have been developed and wireless power transfer (WPT) systems are emerging as a way to provide power to these devices without requiring a hardwired connection. Most of WPT have been based on conventional conductive materials, such as metals, which tend to be less biocompatible and stiff. Herein, we describe a development of an ionic wireless power transfer (IWPT) system on the basis of ionic conductor. A power receiver of the IWPT consisting of polyacrylamide hydrogel with NaCl salts was delivered power through the ionic current induced by capacitive coupling. The hydrogel receiver, easy to fabricate, flexible, transparent, and biocompatible, received power at a distance of 5 cm from the transmitter, and even when inserted inside the mouse. Charge accumulation caused by the prevention of discharge on electrical double layers (CAPDE) induced electrochemical reactions in the IWPT. The mechanism of CAPDE was studied and the amount of products was controlled by tuning the circuit parameter.์œ ๋น„์ฟผํ„ฐ์Šค ์ปดํ“จํŒ…๊ณผ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์˜ ๋“ฑ์žฅ์œผ๋กœ ์‚ฌ๋žŒ๊ณผ ๊ธฐ๊ณ„๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ๋นˆ๋ฒˆํ•ด์ง์— ๋”ฐ๋ผ ํœด๋จผ-๋จธ์‹  ์ธํ„ฐํŽ˜์ด์Šค์˜ ์ค‘์š”์„ฑ์ด ์ ์  ๊ฐ•์กฐ๋˜์–ด์™”๋‹ค. ํœด๋จผ-๋จธ์‹  ์ธํ„ฐํŽ˜์ด์Šค ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ธˆ์†๊ณผ ๋ฐ˜๋„์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ˜„์žฌ์˜ ๋””๋ฐ”์ด์Šค๋“ค์€ ๋ถ€๋“œ๋Ÿฌ์šด ํ”ผ๋ถ€์™€ ์กฐ์ง์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ๊ณผ์˜ ๊ธฐ๊ณ„์  ๋ฌผ์„ฑ์˜ ๋ถˆ์ผ์น˜๋กœ ์ธํ•ด ์‚ฌ์šฉ์ด ์ œ์•ฝ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์ธก๋ฉด์—์„œ ํ•˜์ด๋“œ๋กœ์ ค์€ ๊ธฐ์กด์˜ ์ „๋„์„ฑ ๋ฌผ์งˆ๋“ค์˜ ๋Œ€์•ˆ์œผ๋กœ์„œ ๋“ฑ์žฅํ–ˆ๋‹ค. ํ•˜์ด๋“œ๋กœ์ ค์€ ๋‹ค๋Ÿ‰์˜ ์ˆ˜๋ถ„์„ ๋จธ๊ธˆ๊ณ  ์žˆ๋Š” ๊ณ ๋ถ„์ž ๋„คํŠธ์›Œํฌ์ด๋‹ค. ๊ณ ๋ถ„์ž ๋„คํŠธ์›Œํฌ๋Š” ํ•˜์ด๋“œ๋กœ์ ค์ด ํ˜•์ฒด๋ฅผ ์œ ์ง€ํ•˜๊ณ  ๋˜ ๋ณ€ํ˜•์„ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๋ฉฐ ํ•˜์ด๋“œ๋กœ์ ค ๋‚ด๋ถ€์˜ ์ˆ˜๋ถ„์€ ์ด์˜จ์„ ๋…น์—ฌ ํ•˜์ด๋“œ๋กœ์ ค์ด ์ด์˜จ ์ „๋„์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. ๋”ฐ๋ผ์„œ ํ•˜์ด๋“œ๋กœ์ ค์€ ๋Š˜์–ด๋‚œ ์ƒํƒœ์—์„œ๋„ ์ „๊ธฐ ์‹ ํ˜ธ์™€ ์ „๋ ฅ์„ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š” ์‹ ์ถ•์„ฑ์ด ์žˆ๋Š” ์ „๋„์ฒด๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด์˜จ์„ ์ „ํ•˜์ „๋‹ฌ์ฒด๋กœ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ๊ฒƒ์€ ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ํ•˜์ด๋“œ๋กœ์ ค์„ ์–ด๋–ป๊ฒŒ ์ด์˜จ ์ „๋„์ฒด๋กœ ์ด์šฉํ•˜๋Š”์ง€ ๋˜ ๊ทธ๋กœ ์ธํ•œ ๋ฌธ์ œ๋“ค์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ค„์•ผ ํ•˜๋Š”์ง€ ๋งํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋‘ ๊ฐ€์ง€์˜ ์ด์˜จ์„ฑ ์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ  ๊ทธ์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ํ•  ๊ฒƒ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ•˜์ด๋“œ๋กœ์ ค๋กœ ์ด๋ฃจ์–ด์ง„ ํˆฌ๋ช…ํ•˜๊ณ  ๋Š˜์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ํ„ฐ์น˜ํŒจ๋„์— ๋Œ€ํ•ด ๋…ผ์˜ํ•  ๊ฒƒ์ด๋‹ค. ์ธ๊ฐ„๊ณผ ์ปดํ“จํ„ฐ์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ์ค‘์š”ํ•ด์ง์— ๋”ฐ๋ผ ์ธ๊ฐ„๊ณผ์˜ ํ†ตํ•ฉ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ƒ์ฒด์ ํ•ฉ์„ฑ์„ ๊ฐ€์ง€๋ฉด์„œ๋„ ๋Š˜์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ํ„ฐ์น˜ํŒจ๋„์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” LiCl ์—ผ์„ ํฌํ•จํ•œ ํด๋ฆฌ์•„ํฌ๋ฆด์•„๋งˆ์ด๋“œ (polyacrylamide) ํ•˜์ด๋“œ๋กœ์ ค๋กœ ํ„ฐ์น˜ํŒจ๋„์„ ๋งŒ๋“ค์—ˆ๋‹ค. ํ•˜์ด๋“œ๋กœ์ ค ํ„ฐ์น˜ํŒจ๋“œ๋Š” ๋ถ€๋“œ๋Ÿฝ๊ณ  ์‹ ์ถ•์„ฑ์ด ์žˆ์–ด์„œ ๋†’์€ ๋ณ€ํ˜•์„ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ํ•˜์ด๋“œ๋กœ์ ค์€ ๋†’์€ ํˆฌ๋ช…์„ฑ์„ ๊ฐ€์ง„ ์žฌ๋ฃŒ์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์‹œ๊ด‘์„  ์˜์—ญ์—์„œ 98 %์˜ ํˆฌ๋ช…๋„๋ฅผ ๋ณด์˜€๋‹ค. ํ•˜์ด๋“œ๋กœ์ ค ํ„ฐ์น˜ํŒจ๋“œ๋Š” ํ‘œ๋ฉด ์ •์ „์šฉ๋Ÿ‰ ์‹ ํ„ฐ์น˜ ๊ฐ์ง€ ์‹œ์Šคํ…œ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ 1000%๊ฐ€ ๋„˜๋Š” ๋ณ€ํ˜•์ด ์ฃผ์–ด์ง„ ์ƒํ™ฉ์—์„œ๋„ ์ •์ƒ์ ์œผ๋กœ ์ž‘๋™ํ•˜์˜€๋‹ค. ํ•˜์ด๋“œ๋กœ์ ค ํ„ฐ์น˜ํŒจ๋“œ๋Š” ํ”ผ๋ถ€์— ๋ถ€์ฐฉ๋œ ํ˜•ํƒœ๋กœ๋„ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜์˜€์œผ๋ฉฐ ํ”ผ๋ถ€์— ๋ถ€์ฐฉ๋œ ์ƒํƒœ๋กœ ๊ธ€์„ ์“ฐ๊ฑฐ๋‚˜ ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ฑฐ๋‚˜ ๊ฒŒ์ž„์„ ํ•˜๋Š” ๋“ฑ์˜ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ์ด์˜จ ์ „๋„์ฒด๋ฅผ ์ด์šฉํ•ด์„œ ๋ฌด์„ ์œผ๋กœ ์ „๋ ฅ์„ ์ „๋‹ฌ ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•  ๊ฒƒ์ด๋‹ค. ์ด์‹ํ˜• ์˜๋ฃŒ์žฅ๋น„์— ์ „๋ ฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋“ค ์ค‘์—์„œ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ๋ฐฉ์‹์€ ์ง€์†์ ์œผ๋กœ ์ถฉ๋ถ„ํ•œ ์–‘์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ฉด์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ์€ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ „๋„์„ฑ์ด ๋†’์€ ๊ธˆ์†์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ ๊ธˆ์†์€ ๋”ฑ๋”ฑํ•˜๊ณ  ์ƒ์ฒด์ ํ•ฉ์„ฑ์ด ๋ถ€์กฑํ•œ ์žฌ๋ฃŒ์ด๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์ด์˜จ์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด์˜จ์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์žฅ์น˜๋Š” ๋ถ€๋“œ๋Ÿฝ๊ณ  ํˆฌ๋ช…ํ•˜๊ณ  ์ƒ์ฒด์ ํ•ฉ์„ฑ์ด ๋›ฐ์–ด๋‚œ ํ•˜์ด๋“œ๋กœ์ ค ์ˆ˜์‹ ๋ถ€๋ฅผ ํ†ตํ•ด ์ „๋ ฅ์„ ์ „๋‹ฌ๋ฐ›๋Š”๋‹ค. ์ด์˜จ์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ์€ 5 cm ๋–จ์–ด์ง„ ๊ฑฐ๋ฆฌ์—์„œ๋„ ์ „๋ ฅ์„ ์ „๋‹ฌ ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  ์‹ฌ์ง€์–ด ์ฅ์˜ ํ”ผํ•˜์— ์ด์‹๋œ ์ „๋ ฅ ์ˆ˜์‹ ์žฅ์น˜์—๋„ ํ”ผ๋ถ€๋ฅผ ํ†ต๊ณผํ•˜์—ฌ ์ „๋ ฅ์„ ์ „๋‹ฌ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ด์˜จ์„ฑ ์žฅ์น˜์—์„œ ๋ฌธ์ œ๋กœ ์—ฌ๊ฒจ์ง€๋Š” ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์„ ์˜๋„์ ์œผ๋กœ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ํšŒ๋กœ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ์›ํ•˜๋Š” ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์„ ์œ ๋„ํ•ด ๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์˜จ์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ๋‚ด์—์„œ์˜ ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์˜ ๋ฐœ์ƒ ๊ธฐ์ž‘์„ ํ™•์ธํ•˜์˜€๊ณ  ํšŒ๋กœ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์œผ๋กœ ์ธํ•œ ์ƒ์„ฑ๋ฌผ์˜ ์–‘์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Study Background 1 1.1.1 Ionic conduction 1 1.1.2 Stretchable ionics. 2 1.1.2.1 Issues on the stretchable ionic devices 2 1.1.2.2 Applications of stretchable ionic devices 4 1.2. Purpose of Research 12 Reference 13 Chapter 2. Highly stretchable, transparent ionic touch panel 16 2.1. Introduction 16 2.2. Experimental section 18 2.2.1 Materials 18 2.2.2 An ionic touch strip. 19 2.2.3 Transparent ionic touch panel. 20 2.2.4 Epidermal touch panel. 20 2.3. Results and Discussion 21 2.3.1 A working principle of an ionic touch strip. 21 2.3.2 Sensing mechanism for a 1-dimensional touch strip 27 2.3.3 Latency of the ionic touch panel 29 2.3.4 Parasitic capacitance and baseline current. 32 2.3.5 Accumulated currents induced by touches during the stretching of a gel strip. 34 2.3.6 Strain rate effects of a gel strip during a uniaxial stretching. 35 2.3.7 Resolution of the ionic touch panel. 38 2.3.8 Position-sensing in a 2D ionic touch panel. 40 2.3.9 A stretchable touch panel. 49 2.3.10 Operation of an ionic touch panel under an anisotropic deformation. 55 2.3.11 An epidermal touch panel that is soft and transparent. 57 2.3.12 The insulation of the epidermal touch panel. 58 2.4. Conclusion 63 Reference 64 Chapter 3. Ionic wireless power transfer 67 3.1. Introduction 67 3.2. Experimental section and backgrounds 70 3.2.1 Materials and synthesis 70 3.2.2 Experimental setup for IWPT 71 3.2.3 Power transfer in series resistorinductorcapacitor (RLC) circuits. 71 3.2.4 The structure of the coupling capacitor. 75 3.3. Results and Discussion 77 3.3.1 Basic princibles and operations of an Ionic wireless power transfer (IWPT) 77 3.3.2 Characteristics of IWPT 83 3.3.3 Implantation of an IWPT system. 89 3.3.4 CAPDE for NADPH regeneration 98 3.3.5 Analysis of the voltages generated in the CEDL 112 3.4. Conclusion 114 Reference 115 Chapter 4. Conclusion 119 Abstract in Korean 121 Biography 124Docto

    Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors

    Get PDF
    A general strategy to impart mechanical stretchability to stretchable electronics involves engineering materials into special architectures to accommodate or eliminate the mechanical strain in nonstretchable electronic materials while stretched. We introduce an all solution-processed type of electronics and sensors that are rubbery and intrinsically stretchable as an outcome from all the elastomeric materials in percolated composite formats with P3HT-NFs [poly(3-hexylthiophene-2,5-diyl) nanofibrils] and AuNP-AgNW (Au nanoparticles with conformally coated silver nanowires) in PDMS (polydimethylsiloxane). The fabricated thin-film transistors retain their electrical performances by more than 55% upon 50% stretching and exhibit one of the highest P3HT-based field-effect mobilities of 1.4 cm2/V.s, owing to crystallinity improvement. Rubbery sensors, which include strain, pressure, and temperature sensors, show reliable sensing capabilities and are exploited as smart skins that enable gesture translation for sign language alphabet and haptic sensing for robotics to illustrate one of the applications of the sensors

    Highly Sensitive Soft Foam Sensors for Wearable Applications

    Get PDF
    Due to peopleโ€™s increasing desire for body health monitoring, the needs of knowing humansโ€™ body parameters and transferring them to analyzable and understandable signals become increasingly attractive and significant. The present body-sign measurement devices are still bulky medical devices used in settings such as clinics or hospitals, which are accurate, but expensive and cannot achieve the personalization of usage targets and the monitoring of real-time body parameters. Many commercial wearable devices can provide some of the body indexes, such as the smartwatch providing the pulse/heartbeat information, but cannot give accurate and reliable data, and the data could be influenced by the userโ€™s movement and the loose wearing habit, either. In this way, developing next-generation wearable devices combining good wearable experience and accuracy is gathering increasing attention. The aim of this study is to develop a high-performance pressure/strain sensor with the requirements of comfortable to wear, and having great electromechanical behaviour to convert the physiological signal to an analyzable signal

    A Design-Led, Materials Based Approach to Human Centered Applications Using Modified Dielectric Electroactive Polymer Sensors

    Get PDF
    This paper describes a design-led exploratory scoping study into the potential use of an industry standard dielectric electroactive polymer (DEAP) sensor for applications in assistive healthcare. The focus of this activity was to explore the physical format and integration of soft materials and sensor combinations with properties that afford an opportunity for accurate and unobtrusive real time body mapping and monitoring. The work involved a series of practical investigations into the capacitance changes in the sensor brought on by deformation through different ways of stretching. The dielectric sensors were selected as a direct mapping tool against the body based on the similarity of the stretch qualities of both the sensor and human skin and muscle resulting in a prototype vest for real time breathing monitoring through sensing thoracic movement. This involved modification of the standard sensors and handcrafting bespoke sensors to map critically relevant areas of the thorax

    Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition

    Full text link
    Tesis por compendio[EN] The main objective of this thesis is the development of new sensors and actuators using Printed Electronics technology. For this, conductive, semiconductor and dielectric polymeric materials are used on flexible and/or elastic substrates. By means of suitable designs and application processes, it is possible to manufacture sensors capable of interacting with the environment. In this way, specific sensing functionalities can be incorporated into the substrates, such as textile fabrics. Additionally, it is necessary to include electronic systems capable of processing the data obtained, as well as its registration. In the development of these sensors and actuators, the physical properties of the different materials are precisely combined. For this, multilayer structures are designed where the properties of some materials interact with those of others. The result is a sensor capable of capturing physical variations of the environment, and convert them into signals that can be processed, and finally transformed into data. On the one hand, a tactile sensor printed on textile substrate for 2D gesture recognition was developed. This sensor consists of a matrix composed of small capacitive sensors based on a capacitor type structure. These sensors were designed in such a way that, if a finger or other object with capacitive properties, gets close enough, its behaviour varies, and it can be measured. The small sensors are arranged in this matrix as in a grid. Each sensor has a position that is determined by a row and a column. The capacity of each small sensor is periodically measured in order to assess whether significant variations have been produced. For this, it is necessary to convert the sensor capacity into a value that is subsequently digitally processed. On the other hand, to improve the effectiveness in the use of the developed 2D touch sensors, the way of incorporating an actuator system was studied. Thereby, the user receives feedback that the order or action was recognized. To achieve this, the capacitive sensor grid was complemented with an electroluminescent screen printed as well. The final prototype offers a solution that combines a 2D tactile sensor with an electroluminescent actuator on a printed textile substrate. Next, the development of a 3D gesture sensor was carried out using a combination of sensors also printed on textile substrate. In this type of 3D sensor, a signal is sent generating an electric field on the sensors. This is done using a transmission electrode located very close to them. The generated field is received by the reception sensors and converted to electrical signals. For this, the sensors are based on electrodes that act as receivers. If a person places their hands within the emission area, a disturbance of the electric field lines is created. This is due to the deviation of the lines to ground using the intrinsic conductivity of the human body. This disturbance affects the signals received by the electrodes. Variations captured by all electrodes are processed together and can determine the position and movement of the hand on the sensor surface. Finally, the development of an improved 3D gesture sensor was carried out. As in the previous development, the sensor allows contactless gesture detection, but increasing the detection range. In addition to printed electronic technology, two other textile manufacturing technologies were evaluated.[ES] La presente tesis doctoral tiene como objetivo fundamental el desarrollo de nuevos sensores y actuadores empleando la tecnologรญa electrรณnica impresa, tambiรฉn conocida como Printed Electronics. Para ello, se emplean materiales polimรฉricos conductores, semiconductores y dielรฉctricos sobre sustratos flexibles y/o elรกsticos. Por medio de diseรฑos y procesos de aplicaciรณn adecuados, es posible fabricar sensores capaces de interactuar con el entorno. De este modo, se pueden incorporar a los sustratos, como puedan ser tejidos textiles, funcionalidades especรญficas de mediciรณn del entorno y de respuesta ante cambios de este. Adicionalmente, es necesario incluir sistemas electrรณnicos, capaces de realizar el procesado de los datos obtenidos, asรญ como de su registro. En el desarrollo de estos sensores y actuadores se combinan las propiedades fรญsicas de los diferentes materiales de forma precisa. Para ello, se diseรฑan estructuras multicapa donde las propiedades de unos materiales interaccionan con las de los demรกs. El resultado es un sensor capaz de captar variaciones fรญsicas del entorno, y convertirlas en seรฑales que pueden ser procesadas y transformadas finalmente en datos. Por una parte, se ha desarrollado un sensor tรกctil impreso sobre sustrato textil para reconocimiento de gestos en 2D. Este sensor se compone de una matriz formada por pequeรฑos sensores capacitivos basados en estructura de tipo condensador. Estos se han diseรฑado de forma que, si un dedo u otro objeto con propiedades capacitivas se aproxima suficientemente, su comportamiento varรญa, pudiendo ser medido. Los pequeรฑos sensores estรกn ordenados en dicha matriz como en una cuadrรญcula. Cada sensor tiene una posiciรณn que viene determinada por una fila y por una columna. Periรณdicamente se mide la capacidad de cada pequeรฑo sensor con el fin de evaluar si ha sufrido variaciones significativas. Para ello es necesario convertir la capacidad del sensor en un valor que posteriormente es procesado digitalmente. Por otro lado, con el fin de mejorar la efectividad en el uso de los sensores tรกctiles 2D desarrollados, se ha estudiado el modo de incorporar un sistema actuador. De esta forma, el usuario recibe una retroalimentaciรณn indicando que la orden o acciรณn ha sido reconocida. Para ello, se ha complementado la matriz de sensores capacitivos con una pantalla electroluminiscente tambiรฉn impresa. El resultado final ofrece una soluciรณn que combina un sensor tรกctil 2D con un actuador electroluminiscente realizado mediante impresiรณn electrรณnica sobre sustrato textil. Posteriormente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D empleando una combinaciรณn de sensores impresos tambiรฉn sobre sustrato textil. En este tipo de sensor 3D, se envรญa una seรฑal que genera un campo elรฉctrico sobre los sensores impresos. Esto se lleva a cabo mediante un electrodo de transmisiรณn situado muy cerca de ellos. El campo generado es recibido por los sensores y convertido a seรฑales elรฉctricas. Para ello, los sensores se basan en electrodos que actรบan de receptores. Si una persona coloca su mano dentro del รกrea de emisiรณn, se crea una perturbaciรณn de las lรญneas de los campos elรฉctricos. Esto es debido a la desviaciรณn de las lรญneas de campo a tierra utilizando la conductividad intrรญnseca del cuerpo humano. Esta perturbaciรณn cambia/afecta a las seรฑales recibidas por los electrodos. Las variaciones captadas por todos los electrodos son procesadas de forma conjunta pudiendo determinar la posiciรณn y el movimiento de la mano sobre la superficie del sensor. Finalmente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D mejorado. Al igual que el desarrollo anterior, permite la detecciรณn de gestos sin necesidad de contacto, pero incrementando la distancia de alcance. Ademรกs de la tecnologรญa de impresiรณn electrรณnica, se ha evaluado el empleo de otras dos tecnologรญas de fabricaciรณn textil.[CA] La present tesi doctoral tรฉ com a objectiu fonamental el desenvolupament de nous sensors i actuadors fent servir la tecnologia de electrรฒnica impresa, tambรฉ coneguda com Printed Electronics. Es va fer us de materials polimรจrics conductors, semiconductors i dielรจctrics sobre substrats flexibles i/o elร stics. Per mitjร  de dissenys i processos d'aplicaciรณ adequats, รฉs possible fabricar sensors capaรงos d'interactuar amb l'entorn. D'aquesta manera, es poden incorporar als substrats, com ara teixits tรจxtils, funcionalitats especรญfiques de mesurament de l'entorn i de resposta davant canvis d'aquest. Addicionalment, รฉs necessari incloure sistemes electrรฒnics, capaรงos de realitzar el processament de les dades obtingudes, aixรญ com del seu registre. En el desenvolupament d'aquests sensors i actuadors es combinen les propietats fรญsiques dels diferents materials de forma precisa. Cal dissenyar estructures multicapa on les propietats d'uns materials interaccionen amb les de la resta. manera El resultat es un sensor capaรง de captar variacions fรญsiques de l'entorn, i convertirles en senyals que poden ser processades i convertides en dades. D'una banda, s'ha desenvolupat un sensor tร ctil imprรจs sobre substrat tรจxtil per a reconeixement de gestos en 2D. Aquest sensor es compon d'una matriu formada amb petits sensors capacitius basats en una estructura de tipus condensador. Aquests s'han dissenyat de manera que, si un dit o un altre objecte amb propietats capacitives s'aproxima prou, el seu comportament varia, podent ser mesurat. Els petits sensors estan ordenats en aquesta matriu com en una quadrรญcula. Cada sensor tรฉ una posiciรณ que ve determinada per una fila i per una columna. Periรฒdicament es mesura la capacitat de cada petit sensor per tal d'avaluar si ha sofert variacions significatives. Per a aixรฒ cal convertir la capacitat del sensor a un valor que posteriorment รฉs processat digitalment. D'altra banda, per tal de millorar l'efectivitat en l'รบs dels sensors tร ctils 2D desenvolupats, s'ha estudiat la manera d'incorporar un sistema actuador. D'aquesta forma, l'usuari rep una retroalimentaciรณ indicant que l'ordre o acciรณ ha estat reconeguda. Per a aixรฒ, s'ha complementat la matriu de sensors capacitius amb una pantalla electroluminescent tambรฉ impresa. El resultat final ofereix una soluciรณ que combina un sensor tร ctil 2D amb un actuador electroluminescent realitzat mitjanรงant impressiรณ electrรฒnica sobre substrat tรจxtil. Posteriorment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D emprant una combinaciรณ d'un mรญnim de sensors impresos tambรฉ sobre substrat tรจxtil. En aquest tipus de sensor 3D, s'envia un senyal que genera un camp elรจctric sobre els sensors impresos. Aixรฒ es porta a terme mitjanรงant un elรจctrode de transmissiรณ situat molt a proper a ells. El camp generat รฉs rebut pels sensors i convertit a senyals elรจctrics. Per aixรฒ, els sensors es basen en elรจctrodes que actuen de receptors. Si una persona colยทloca la seva mร  dins de l'ร rea d'emissiรณ, es crea una pertorbaciรณ de les lรญnies dels camps elรจctrics. Aixรฒ รฉs a causa de la desviaciรณ de les lรญnies de camp a terra utilitzant la conductivitat intrรญnseca de el cos humร . Aquesta pertorbaciรณ afecta als senyals rebudes pels elรจctrodes. Les variacions captades per tots els elรจctrodes sรณn processades de manera conjunta per determinar la posiciรณ i el moviment de la mร  sobre la superfรญcie del sensor. Finalment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D millorat. A l'igual que el desenvolupament anterior, permet la detecciรณ de gestos sense necessitat de contacte, perรฒ incrementant la distร ncia d'abast. A mรฉs a mรฉs de la tecnologia d'impressiรณ electrรฒnica, s'ha avaluat emprar altres dues tecnologies de fabricaciรณ tรจxtil.Ferri Pascual, J. (2020). Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition [Tesis doctoral no publicada]. Universitat Politรจcnica de Valรจncia. https://doi.org/10.4995/Thesis/10251/153075TESISCompendi

    Passive, Self-Healable, Dielectric Elastomers for Structural Health Monitoring

    Get PDF
    NASA maintains the ability to track a large majority of objects in Earthโ€™s orbit, however lack the ability to track objects smaller than five centimeters in diameter. These untrackable objects represent a significant danger to inflatable structures. This work seeks to synthesize and fabricate a self-healable, passive, dielectric elastomer impact sensor for structural health monitoring on inflatable space structures subject to impact by micrometeoroids and orbital debris. In a setting in which impact repairs can be extremely costly, the implementation of such a technology would not only alert personnel of such an event but would also serve to decrease the cost and time of repairs. This investigation synthesizes an intrinsically self-healing poly(dimethylsiloxane) via a supra-molecular network of multi-strength hydrogen bonds. The modified poly(dimethylsiloxane) network must be effective in harsh environments, particularly extremely low temperatures, as well as retain the dielectric properties of poly(dimethylsiloxane). Self-healing efficiency, stretchability and flexibility are also desirable properties to attain. Integration of the manufactured sensor arrays around a layer of woven ceramic fiber with conductive fabric electrodes, hypervelocity impact testing, and self-healing efficiency tests are performed and confirm the sensors capabilities. The performed tests demonstrate a measurable change in capacitance associated with impact damage and location. Success is represented by passive operation and the penetrated sensorsโ€™ ability to self-repair without compromising the sensors impact detection capabilities

    Soft Tactile Sensors for Mechanical Imaging

    Get PDF
    Tactile sensing aims to electronically capture physical attributes of an object via mechanical contact. It proves indispensable to many engineering tasks and systems, in areas ranging from manufacturing to medicine and autonomous robotics. Biological skin, which is highly compliant, is able to perform sensing under challenging and highly variable conditions with levels of performance that far exceed what is possible with conventional tactile sensors, which are normally fabricated with non-conforming materials. The development of stretchable, skin-like tactile sensors has, as a result, remained a longstanding goal of engineering. However, to date, artificial tactile sensors that might mimic both the mechanical and multimodal tactile sensory capabilities of biological skin remain far from realization, due to the challenges of fabricating spatially dense, mechanically robust, and compliant sensors in elastic media. Inspired by these demands, this dissertation addresses many aspects of the challenging problem of engineering skin-like electronic sensors. In the first part of the thesis, new methods for the design and fabrication of thin, highly deformable, high resolution tactile sensors are presented. The approach is based on a novel configuration of arrays of microfluidic channels embedded in thin elastomer membranes. To form electrodes, these channels are filled with a metal alloy, eutectic Gallium Indium, that remains liquid at room temperature. Using capacitance sensing techniques, this approach achieves sensing resolutions of 1 mmโˆ’1^{-1}. To fabricate these devices, an efficient and robust soft lithography method is introduced, based on a single step cast. An analytical model for the performance of these devices is derived from electrostatic theory and continuum mechanics, and is demonstrated to yield excellent agreement with measured performance. This part of the investigation identified fundamental limitations, in the form of nonmonotonic behavior at low strains, that is demonstrated to generically affect solid cast soft capacitive sensors. The next part of the thesis is an investigation of new methods for designing soft tactile sensors based on multi-layer heterogeneous 3D structures that combine active layers, containing embedded liquid metal electrodes, with passive and mechanically tunable layers, containing air cavities and micropillar geometric supports. In tandem with analytical and computational modeling, these methods are demonstrated to facilitate greater control over mechanical and electronic performance. A new soft lithography fabrication method is also presented, based on the casting, alignment, and fusion of multiple functional layers in a soft polymer substrate. Measurements indicate that the resulting devices achieve excellent performance specifications, and avoid the limiting nonmonotonic behavior identified in the first part of the thesis. In order to demonstrate the practical utility of the devices, we used them to perform dynamic two-dimensional tactile imaging under distributed indentation loads. The results reflect the excellent static and dynamic performance of these devices. The final part of the thesis investigates the utility of the tactile sensing methods pursued here for imaging lumps embedded in simulated tissue. In order to facilitate real-time sensing, an electronic system for fast, array based measurement of small, sub-picofarad (pF) capacitance levels was developed. Using this system, we demonstrated that it is possible to accurately capture strain images depicting small lumps embedded in simulated tissue with either an electronic imaging system or a sensor worn on the finger, supporting the viability of wearable sensors for tactile imaging in medicine. In conclusion, this dissertation confronts many of the most vexing problems arising in the pursuit of skin-like electronic sensors, including fundamental operating principles, structural and functional electronic design, mechanical and electronic modeling, fabrication, and applications to biomedical imaging. The thesis also contributes knowledge needed to enable applications of tactile sensing in medicine, an area that has served as a key source of motivation for this work, and aims to facilitate other applications in areas such as manufacturing, robotics, and consumer electronics.Ph.D., Electrical Engineering -- Drexel University, 201
    • โ€ฆ
    corecore