1,707 research outputs found

    Tracking and Mitigation of Chirp-Type Interference in GPS Receivers Using Adaptive Notch Filters

    Get PDF
    A Global Positioning System (GPS) receiver is extremely prone to intentional and unintentional interference due to weak signal power experienced on the surface of the earth, which severely affects the navigation functionality and occasionally avoids the receivers from acquiring the GPS signal. This work presents a comparative performance analysis of two different types of Adaptive Notch Filtering (ANF) algorithms for GPS specific applications that are (1) Direct form 2nd Order ANF and (2) Lattice-based ANF for tracking and mitigation of Chirp-type Interference. Three classes of chirp-type interference signals, studied in this paper, are linear chirp, quadratic chirp and cubic chirp. Performance of each ANF algorithm is evaluated at the output of the acquisition module in terms of search-grid SNR and Peak metric

    Effect of Thermal and Mechanical Deformation of Metamaterial FDM Components

    Get PDF
    At Lancaster University, research is currently investigating the use of rapid manufacturing (RM) to realise metamaterials, although key to the success of this project is the development of an understanding of how coated RM parts deform under thermal and mechanical stress. The research in this paper presents a comparison of the thermal and mechanical deformation behaviour of RM coated metamaterials components from a numerical context. The research uses the design of a simple metamaterial unit cell as a test model for both the experimental and finite element method (FEM). The investigation of deformation behaviour of sample Fused Deposition Modelling (FDM) parts manufactured in different orientations and simulated using commercial FEM code means that the FEM analysis can be utilized for design verification of FDM parts. This research contributes to further research into the development of RM metamaterials, specifically design analysis and verification tools for RM materials

    On adaptive filter structure and performance

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D75686/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    Full text link
    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code.Comment: 9 pages, 5 figure

    Multi-dimensional filter design in digital television systems

    Get PDF
    Imperial Users onl

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    Design and implementation of digital wave filter adaptors

    Get PDF

    Algorithms and structures for long adaptive echo cancellers

    Get PDF
    The main theme of this thesis is adaptive echo cancellation. Two novel independent approaches are proposed for the design of long echo cancellers with improved performance. In the first approach, we present a novel structure for bulk delay estimation in long echo cancellers which considerably reduces the amount of excess error. The miscalculation of the delay between the near-end and the far-end sections is one of the main causes of this excess error. Two analyses, based on the Least Mean Squares (LMS) algorithm, are presented where certain shapes for the transitions between the end of the near-end section and the beginning of the far-end one are considered. Transient and steady-state behaviours and convergence conditions for the proposed algorithm are studied. Comparisons between the algorithms developed for each transition are presented, and the simulation results agree well with the theoretical derivations. In the second approach, a generalised performance index is proposed for the design of the echo canceller. The proposed algorithm consists of simultaneously applying the LMS algorithm to the near-end section and the Least Mean Fourth (LMF) algorithm to the far-end section of the echo canceller. This combination results in a substantial improvement of the performance of the proposed scheme over both the LMS and other algorithms proposed for comparison. In this approach, the proposed algorithm will be henceforth called the Least Mean Mixed-Norm (LMMN) algorithm. The advantages of the LMMN algorithm over previously reported ones are two folds: it leads to a faster convergence and results in a smaller misadjustment error. Finally, the convergence properties of the LMMN algorithm are derived and the simulation results confirm the superior performance of this proposed algorithm over other well known algorithms

    Effectively Finding the Optimal Wavelet for Hybrid Wavelet - Large Margin Signal Classification

    Full text link
    For hybrid wavelet - large margin classifiers, adapting the wavelet may significantly improve the classification performance. We propose to select the wavelet with respect to a large margin classifier and data to improve class separability and minimise the generalisation error. In this paper, we show that this wavelet adaptation problem can be formulated as an optimisation problem with polynomial objective function and investigate some techniques to solve it. In particular, we propose an adaptive grid search algorithm that efficiently solves the problem compared with standard optimisation techniques

    Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy

    Full text link
    We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emer- gence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 21 pages, 10 Figure
    • 

    corecore