4,351 research outputs found

    Case study based approach to integration of sustainable design analysis, performance and building information modelling

    Get PDF
    This paper presents a case study based research of both the method and technology for integration of sustainable design analysis (SDA) and building information modelling (BIM) within smart built environments (SBE). Level 3 BIM federation and integration challenges are recognised and improvements suggested, including issues with combining geometry and managing attribute data. The research defines SDA as rapid and quantifiable analysis of diverse sustainable alternatives and ‘what if’ scenarios posed by a design team and client during the early stages of the project, where the benefits of correct decisions can significantly exceed the actual investment required. The SDA concept and BIM integration findings are explained through a convergence from conceptualisation to calculation stages, emphasising the importance of an iterative over a linear approach. The approach allowed for a multitude of “what if” scenarios to be analysed, leading to more informed sustainable solutions at the right stages of the project development, with a generally lower level of detail (LOD) and computational/modelling effort required. In addition, the final stage of Building Regulations Part L compliance calculations was reached with a lot greater level of certainty, in terms of its requirements. Finally, a strategy for long term performance monitoring and evaluation of the building design in terms of its environmental sustainability is presented, via integration between BIM and SBE (Smart Built Environment) technologies

    Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things

    Get PDF
    The widespread diffusion of sensors, mobile devices, social media, and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations including the interoperability of sensors, data quality, security of access, and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential.JRC.H.6-Digital Earth and Reference Dat

    A Service-oriented Architecture for Ambient-Assisted Living

    Get PDF
    Ambient-Assisted Living (AAL) is currently an important research and development area, mainly due to the rapidly aging society, the increasing cost of health care, and the growing importance that individuals place on living independently. The general goal of AAL solutions is to apply ambient-assisted intelligence to enable people with specific demands (e.g. handicapped or elderly) to live in their preferred environment longer by tools (i.e. smart objects, mobile and wearable sensors, intelligent devices) being sensitive and responsive to the presence of people and their actions. The research describes the design and development of a novel service-oriented system architecture where different smart objects and sensors are combined to offer ambient-assisted living intelligence to older people. The design stage is driven by a user-centred approach to define an interoperable architecture and human-oriented principles to create usable products and well-accepted services. Such architecture has been realized in the context of an Italian research project funded by the Marche Region and promoted by INRCA (National Institute on Health and Science of Aging) in the framework of smart home for active ageing and ambient assisted living. The result is an interoperable and flexible platform that allows creating user-centred services for independent living

    CRC for Construction Innovation : annual report 2008-2009

    Get PDF

    Application of CBR for intelligent process control of a WWTP

    Get PDF
    This paper proposes the use of a Case-Based Reasoning (CBR) system for the control and the supervision of a real wastewater treatment plant (WWTP). A WWTP is a critical system which aims to ensure the quality of the water discharged to the receiving bodies, stablished by applicable regulations. At the current stage the proposed methodology has been tested off-line on a real system for the control of the aeration process in the biological treatment of a WWTP within the ambit ofConsorci Besòs Tordera (CBT), a local water administration in the area of Barcelona. For this purpose, data mining methods are considered to extract the available knowledge from historical data to find a useful case base to be able to generate set-points for the local controllers in the WWTP. The results presented in this work are evaluated taking into account the performance of the CBR method e.g. case base size, CBR cycle time or number of cases resolved satisfactorily (forthcoming steps will include on-line tests). For this purpose, some Key Performance Indicators (KPI) are designed together with the plant manager and process experts, in order to monitor key parameters of the WWTP which are representative of the performance of the control and supervision system. Hence, these KPI are related with water quality regulations —e.g. ammonia concentration in the WWTP effluent— and the economic cost efficiency —e.g. electrical consumption of the installation. In order to evaluate the results, different flat-based memory organizations (i.e. cases are stored sequentially in a list) for the case base are considered. First, a unique case base is used. At the current stage and for the results shown in this work, this case base is divided in multiple libraries depending on a case classification. Finally, the combination of this approach with Rule-Based Reasoning (RBR) methods is proposed for the next stages of the work.The authors acknowledge the partial support of this work by the Industrial Doctorate Programme (2017-DI-006) and the Research Consolidated Groups/Centres Grant (2017 SGR 574) from the Catalan Agency of University and Research Grants Management (AGAUR), from Catalan Government.Peer ReviewedPostprint (author's final draft

    OptEEmAL: Decision-Support Tool for the Design of Energy Retrofitting Projects at District Level

    Get PDF
    Designing energy retrofitting actions poses an elevated number of problems, as the definition of the baseline, selection of indicators to measure performance, modelling, setting objectives, etc. This is time-consuming and it can result in a number of inaccuracies, leading to inadequate decisions. While these problems are present at building level, they are multiplied at district level, where there are complex interactions to analyse, simulate and improve. OptEEmAL proposes a solution as a decision-support tool for the design of energy retrofitting projects at district level. Based on specific input data (IFC(s), CityGML, etc.), the platform will automatically simulate the baseline scenario and launch an optimisation process where a series of Energy Conservation Measures (ECMs) will be applied to this scenario. Its performance will be evaluated through a holistic set of indicators to obtain the best combination of ECMs that complies with user's objectives. A great reduction in time and higher accuracy in the models are experienced, since they are automatically created and checked. A subjective problem is transformed into a mathematical problem; it simplifies it and ensures a more robust decision-making. This paper will present a case where the platform has been tested.This research work has been partially funded by the European Commission though the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 680676. All related information to the project is available at https://www.opteemal-project.eu

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Architecture for Smart Buildings Based on Fuzzy Logic and the OpenFog Standard

    Get PDF
    The combination of Artificial Intelligence and IoT technologies, the so-called AIoT, is expected to contribute to the sustainability of public and private buildings, particularly in terms of energy management, indoor comfort, as well as in safety and security for the occupants. However, IoT systems deployed on modern buildings may generate big amounts of data that cannot be efficiently analyzed and stored in the Cloud. Fog computing has proven to be a suitable paradigm for distributing computing, storage control, and networking functions closer to the edge of the network along the Cloud-to-Things continuum, improving the efficiency of the IoT applications. Unfortunately, it can be complex to integrate all components to create interoperable AIoT applications. For this reason, it is necessary to introduce interoperable architectures, based on standard and universal frameworks, to distribute consistently the resources and the services of AIoT applications for smart buildings. Thus, the rationale for this study stems from the pressing need to introduce complex computing algorithms aimed at improving indoor comfort, safety, and environmental conditions while optimizing energy consumption in public and private buildings. This article proposes an open multi-layer architecture aimed at smart buildings based on a standard framework, the OpenFog Reference Architecture (IEEE 1934–2018 standard). The proposed architecture was validated experimentally at the Faculty of Engineering of Vitoria-Gasteiz to improve indoor environmental quality using Fuzzy logic. Experimental results proved the viability and scalability of the proposed architecture.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II; to the DiputaciĂłn Foral de Álava (DFA), through the project CONAVANTER; to the UPV/EHU, through the projects GIU20/063 and CBL 22APIN; and to the MobilityLab Foundation (CONV23/12), for supporting this work

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e InnovaciĂłn PI15/00306Ministerio de Ciencia e InnovaciĂłn DTS15/00195Junta de AndalucĂ­a PI-0010-2013Junta de AndalucĂ­a PI-0041-2014Junta de AndalucĂ­a PIN-0394-201

    Parametric and Visual Programming BIM Applied to Museums, Linking Container and Content

    Get PDF
    In recent years we have been experiencing an ever-increasing number of Building Modeling Modeling (BIM) and Visual Programming Language (VPL) approaches in the architectural design field. These experiments have inspired new research strictly focused on exploring values, criticalities, and the advantages of applying these combined methodologies in the Cultural Heritage domain. This integrated approach has emphasized the benefits derived from HBIM. The next step is to critically evaluate the application of BIM and VPL processes used in the management and valorisation of museum heritage, pursuing both parametric and algorithmic approaches. The research group worked on building a model that shared the BIM hierarchical structure and the flexibility of the VPL methodologies. Semi-automatic procedures were developed within a rigorous BIM workflow, with the help of Autodesk and McNeel tools, to show and manage complex museum management phenomena. These procedures aimed to respond to three different objectives. First, the need to associate information from the Facility Report to the individual BIM components to predict and monitor the conditions in which museum collections are found. Second, the intention to measure the attractiveness of the artifacts within the exhibition project and the design effects for a correct prefiguration of visitor flows. Third, the elements involved included the exhibition area obtained from an HBIM model (converted into a visual field through interoperable processes), the digitized collections (the attractive elements), the users and, finally, the numerical evaluation of the visibility of specific objects within collections by simulating the human point of view. Once automated, the devised procedures can be considered a prototype to support curators in controlling and improving the efficiency of the exhibition layout
    • …
    corecore