125 research outputs found

    A Preliminary Study

    Get PDF
    Bioelectrical Impedance Spectroscopy (BIS) allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi- frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current- injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously

    Energy-Efficient PRBS Impedance Spectroscopy on a Digital Versatile Platform

    Get PDF
    partially_open6siThis research has been partially funded by the Italian Ministry of University and Research (MUR) through the program “Dipartimenti di Eccellenza” (2018-2022). The research has also received partial support from the Italian Ministry of University and Research (MUR) and the Eranet FLAG ERA initiative within CONVERGENCE project (CUP B84I16000030005) through the IUNET Consortium.This paper presents the digital design of a versatile and low-power broadband impedance spectroscopy (IS) system based on pseudo-random binary sequence (PRBS) excitation. The PRBS technique allows fast, and low-power estimation of the impedance spectrum over a wide bandwidth with adequate accuracy, proving to be a good candidate for portable medical devices, especially. This paper covers the low-power design of the firmware algorithms and implements them on a versatile and reconfigurable digital platform that can be easily adjusted to the specific application. It will analyze the digital platform with the aim of reducing power consumption while maintaining adequate accuracy of the estimated spectrum. The paper studies two main algorithms (time-domain and frequency-domain) used for PRBS-based IS and implements both of them on the ultra-low-power GAP-8 digital platform. They are compared in terms of accuracy, measurement time, and power budget, while general design trade-offs are drawn out. The time-domain algorithm demonstrated the best accuracy while the frequency-domain one contributes more to save power and energy. However, analysis of the energy-per-error FOM revealed that the time-domain algorithm outperforms the frequency-domain algorithm offering better accuracy for the same energy consumption. Numerical methods and microprocessor resources are exploited to optimize the implementation of both algorithms achieving 27 ms in processing time, power consumption as low as 1.4 mW and a minimum energy consumption per measurement of 0.5 mJ, for a dense impedance spectrum estimation of 214 points.embargoed_20210525Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M.Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M

    Tomografía de impedancia eléctrica: fundamentos de hardware y aplicaciones médicas

    Get PDF
    Introduction: The following article shows a systematic review of publications on hardware topologies used to capture and process electrical signals used in Electrical Impedance Tomography (EIT) in medical applications, as well topicality of the EIT in the field of biomedicine. This work is the product of the research project “Electrical impedance tomography based on mixed signal devices”, which took place at the University of Cauca during the period 2017-2019. Objective: This review describes the operation, topicality and clinical use of Electrical Impedance Tomography systems. Methodology: A systematic review was carried out in the IEEE-Xplore, ScienceDirect and Scopus databases. After the classification, 106 relevant articles were obtained on scientific studies of EIT systems; applications dedicated to the analysis of medical images. Conclusions: Impedance-based methods have a variety of medical applications as they allow for the reconstruction of a body region, by estimating the conductivity distribution inside the human body; this is without exposing the patient to the damaging effects of radiation and contrast elements. Impedance-based methods are therefore a very useful and versatile tool in the treatment of diseases such as: monitoring blood pressure, detection of atherosclerosis, localization of intracranial hemorrhages, determining bone density, among others. Originality: It describes the necessary components to design an EIT system, as well as the design characteristics depending on the pathology to be visualized.  Introducción: En el siguiente artículo se muestra una revisión sistemática de publicaciones sobre topologías hardware utilizadas para capturar y procesar señales eléctricas utilizadas en tomografía por impedancia eléctrica (TIE) en aplicaciones médicas, así como la actualidad del TIE en el campo de la biomedicina. Este trabajo es producto del proyecto de investigación “Tomografía de impedancia eléctrica basada en dispositivo de señal mixta”, que tiene lugar en la Universidad del Cauca durante el período 2017-2019.   Objetivo: Esta revisión describe la estructura hardware de los sistemas de TIE, además de sus características, como frecuencia y magnitud de señales de corriente, patrones de inyección y medición de señales y número de electrodos orientado a, uso clínico.   Metodología: Se realizó una revisión sistemática, en las bases de datos IEEE-Xplore, ScienceDirect y Scopus. Tras la clasificación se obtuvo 106 artículos relevantes sobre estudios científicos de sistemas, aplicaciones dedicadas al análisis de imágenes médicas.   Conclusión: Los métodos basados en impedancia, tienen una variedad de aplicaciones médicas, puesto que permite la reconstrucción de una región corporal, mediante la estimación de la distribución de conductividad al interior del cuerpo humano, sin radiación y elementos de contraste, tan perjudiciales para la salud de los pacientes; convirtiéndola en una herramienta muy útil y versátil en el tratamiento de enfermedades como: monitorear la presión arterial, detección de arterosclerosis, localización de hemorragias intracraneales, determinar la densidad ósea, entre otras.     &nbsp

    Smart Bioimpedance Spectroscopy Device for Body Composition Estimation

    Get PDF
    The purpose of this work is to describe a first approach to a smart bioimpedance spectroscopy device for its application to the estimation of body composition. The proposed device is capable of carrying out bioimpedance measurements in multiple configurable frequencies, processing the data to obtain the modulus and the bioimpedance phase in each of the frequencies, and transmitting the processed information wirelessly. Another novelty of this work is a new algorithm for the identification of Cole model parameters, which is the basis of body composition estimation through bioimpedance spectroscopy analysis. Against other proposals, the main advantages of the proposed method are its robustness against parasitic effects by employing an extended version of Cole model with phase delay and three dispersions, its simplicity and low computational load. The results obtained in a validation study with respiratory patients show the accuracy and feasibility of the proposed technology for bioimpedance measurements. The precision and validity of the algorithm was also proven in a validation study with peritoneal dialysis patients. The proposed method was the most accurate compared with other existing algorithms. Moreover, in those cases affected by parasitic effects the proposed algorithm provided better approximations to the bioimpedance values than a reference device.Ministerio de Economía y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de Andalucía PIN-0394-2017Unión Europea "FRAIL

    Enhanced image reconstruction of electrical impedance tomography using simultaneous algebraic reconstruction technique and K-means clustering

    Get PDF
    Electrical impedance tomography (EIT), as a non-ionizing tomography method, has been widely used in various fields of application, such as engineering and medical fields. This study applies an iterative process to reconstruct EIT images using the simultaneous algebraic reconstruction technique (SART) algorithm combined with K-means clustering. The reconstruction started with defining the finite element method (FEM) model and filtering the measurement data with a Butterworth low-pass filter. The next step is solving the inverse problem in the EIT case with the SART algorithm. The results of the SART algorithm approach were classified using the K-means clustering and thresholding. The reconstruction results were evaluated with the peak signal noise ratio (PSNR), structural similarity indices (SSIM), and normalized root mean square error (NRMSE). They were compared with the one-step gauss-newton (GN) and total variation regularization based on iteratively reweighted least-squares (TV-IRLS) methods. The evaluation shows that the average PSNR and SSIM of the proposed reconstruction method are the highest of the other methods, each being 24.24 and 0.94; meanwhile, the average NRMSE value is the lowest, which is 0.04. The performance evaluation also shows that the proposed method is faster than the other methods

    Bioimpedance Sensor

    Get PDF
    A bioimpdance senor to measure the impedance of a human body. Completed as part of the engineering Senior Design Projec

    Long-term effects of sport on segmental body composition: a study in adult and elderly subjects.

    Get PDF
    Research investigating the effects of sport in the elderly has demonstrated that physical exercise contributes to maintain muscle mass and to contrast the increase of fat mass. However, the effects of long-term sport on body composition, in particular on segmental body composition, and the effect of different sports have been less investigated. The objective of this research was to study the long-term effects of physical exercise on physiological and psychological well-being in the elderly. For this purpose, a first section of the thesis concerned methodological aspects related to body composition assessment: 1) the comparison of specific bioelectrical impedance vector analysis (specific BIVA) with reference techniques; 2) the association between specific BIVA and self-perceived body image; 3) the comparison of results among widely used impedance devices. Different samples and techniques were used for each objective. 1) 202 athletes (139 men and 63 women; 20.6 ± 5.1 years of age) for the total body composition study, and 50 young active students (25 men and 25 women; 24.3 ± 4.6 y) for the study on segmental body composition. DXA was used as the criterion method to assess fat-free mass (FFM), fat-mass (FM), and %FM; dilution techniques were used to assess total body water (TBW) and extracellular water (ECW), respectively. 2) 632 young adults (238 men and 394 women; 22.8 ± 2.3 y) and 162 middle-aged and elderly adults (96 men and 66 women; 61.4 ± 7.6 y). The Williamson’s figure scale was used to evaluate current body size. 3) 31 adults (8 men and 23 women; 39.8 ± 14.2 y). Three different bioimpedance devices. Specific BIVA showed to be accurate in the assessment of %FM and ECW/ICW ratio. The segmental approach showed a good agreement with DXA too. The analysis of the relationship between current body image and body composition showed that young and elderly normal weight individuals of both sexes recognise themselves correctly, and consider their silhouettes mainly associated with %FM. The comparison among bioimpedance devices showed systematic differences in the measure of reactance. The bias was amended by a correction factor. Following these results, the second section of the thesis investigated total and segmental body composition, muscle strength, morphological and functional symmetry, degree of depression and body image perception in middle aged and elderly individuals. A sample of 106 active subjects (72 men and 34 women; 60.9 ± 7.5 y), involved in three different sports (Tennis, Tai Chi, Running), and a sample of 105 age-matched controls (49 men, 56 women) were considered. The results showed that active individuals had better nutritional status with respect to the controls, lower values of %FM and higher muscle mass in the total body, in the arms and, particularly, in the trunk. Runners and tennis players showed lower values of %FM and higher values of muscle mass than Tai Chi subjects, both at the total and the segmental level. Tennis players exhibited the highest values of muscle mass in the total body, and runners in the trunk. Active subjects as a total and in each sport separately were more symmetrical than controls. Finally, the active sample exhibited better body image satisfaction and psychological well-being than controls. In summary, specific BIVA demonstrated to be a suitable tool for monitoring total and segmental body composition changes. The long-term practice of sport positively influences total and segmental body composition, with more accentuated effects among runners and tennis players than Tai Chi subjects. Active men and women were less affected by the age-related process of %FM increase, muscle mass and strength reduction, are more symmetrical and hence are further away from the emergence of sarcopenia, sarcopenic obesity, risk of falls and frailty. They were also more satisfied about their body image. All this concurs to maintain health and mental well-being and promotes successful ageing

    Study and development of a novel radio frequency electromedical device for the treatment of peri-implantitis: experimental performance analysis, modelling of the electromagnetic interaction with tissues and in vitro and in vivo evaluation

    Get PDF
    La peri-implantite (PI) è una grave patologia che interessa tessuti peri-implantari molli e duri. Ad oggi, la prevenzione è l’unico mezzo per contrastarla. Recentemente, è stata sperimentata una terapia basata sulla somministrazione di corrente elettrica a radio frequenza (successo: 81%). Il trattamento è stato simulato numericamente, fornendo le distribuzioni di corrente (EC) e campo elettrico (EF) nei tessuti: l’effetto anti-infiammatorio è attribuibile alla EC, quello di rigenerazione ossea al EF. Sono state considerate le misure di bioimpedenza (BM) per individuare le infiammazioni; numericamente si sono osservati cambiamenti nel modulo di impedenza del 4-20% (secondo diversi parametri), anche più alti sperimentalmente (35% infiammazione, 56% PI). Le BM permettono quindi di identificare il tessuto da trattare. Per la ripetibilità, sono state considerate radici di denti naturali, numericamente e sperimentalmente; l’ordine di grandezza è lo stesso (qualche kΩ), anche se ci sono differenze legate alle condizioni di misura. La variabilità intra-soggetto è il 10% in uno stesso giorno, fino al 26% in giorni diversi; quella inter-soggetto è più alta. La sicurezza elettrica è stata attentamente esaminata e si sono individuate le direttive applicabili (IEC 60601-1, 60601-1-2 and 60601-2-2). Sono stati fatti test in vitro per valutare l’effetto della terapia sulla vitalità cellulare: non c’è un significativo aumento della necrosi (vitalità: 85% test, 94% controlli), l’effetto negativo principale è l’apoptosi. Sono stati numericamente indagati possibili effetti termici: non sono stati individuati riscaldamenti nocivi dei tessuti. Si è progettato un nuovo dispositivo (PeriCare®) per trattare la PI, con parti diagnostica (BM) e terapeutica. Si stanno progettando elettrodi specifici e realizzando il prototipo. Si sta compilando il fascicolo tecnico e pianificando i test di conformità, in vista della certificazione. Il dispositivo medico dovrebbe entrare nel mercato entro l’anno.Peri-implantitis is a severe disease affecting hard and soft peri-implant tissues. At present, prevention is the only means to contrast it. Recently, a therapy based on the administration of radio frequency electric current was experimented (success rate: 81%). The treatment was numerically simulated, providing the electric current (EC) and field (EF) distributions in peri-implant tissues: the anti-inflammatory effect can be associated to EC, the bone regeneration to the EF. Bioimpedance measurements (BM) were investigated to detect inflammation; changes in the measured impedance modulus are equal to 4-20% (depending on different parameters) from numerical results, also more evident experimentally (35% inflammation, 56% peri-implantitis). So, BM could allow to detect the tissue to be treated. To evaluate the repeatability, natural tooth roots were numerically and experimentally measured; the order of magnitude is the same (some kΩ), even if there are differences probably due to the measurement conditions. Intra-subject variability was of 10% in the same day, but up to 26% in different days; inter-subject variability was higher. The electrical safety was accurately taken into account. The applicable directives were individuated (IEC 60601-1, 60601-1-2 and 60601-2-2). In vitro tests were carried out to evaluate the effect of the therapy on cell vitality: there is not a significant increase in necrosis (vitality: 85% tests, 94% controls), the main negative effect is apoptosis. Possible thermal effects were numerically investigated: no dangerous tissue heating was observed. A new device for the peri-implantitis treatment, PeriCare®, was designed, with diagnostic (BM) and therapeutic parts. Proper electrodes are being designed and the prototype is being realized. The technical file is being compiled and the conformity verification tests are being planned towards the certification process. Hopefully, the medical device will be placed into the market within this year
    corecore