1,757 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    Quality of Service based Retrieval Strategy for Distributed Video on Demand on Multiple Servers

    Get PDF
    The recent advances and development of inexpensive computers and high speed networking technology have enabled the Video on Demand (VoD) application to connect to shared-computing servers, replacing the traditional computing environments where each application was having its own dedicated computing hardware. The VoD application enables the viewer to select, from a list of video files, his favorite video file and watch its reproduction at will. Early video on demand applications were based on single video server where video streams are initiated from a single server, then with the increase in the number of the clients who became interested in VoD services, the focus became on Distributed VoD architectures (DVoD) where the context of distribution may be distributed system components, distributed streaming servers, distributed media content etc.The VoD server must handle several issues in order to be able to present a successful service. It has to receive the clients’ requests and analyze them, calculate the necessary resources for each request, and decide whether a request can be admitted or not. Once the request is admitted, the server must schedule the request, retrieve the required video data and send the video data in a timely manner so that the client does not suffer data starvation in his buffer during the video reproduction. So, the overall objective of a VoD service provider is to provide a better Quality of Service (QoS). Some issues related to QoS are-efficient use of bandwidth, providing better throughput etc.One of the important issues is to retrieve the video data from the servers in minimum time and to start the playback of the video at client side with a minimum waiting time. The overall time elapsed in retrieving the video data and starting the playback is known as access time. The thesis presents an efficient retrieval strategy for a distributed VoD environment where the basic objective is to minimize the access time by maintaining the presentation continuity at the client side. We have neglected some of the network parameters which may affect the access time, by assuming a high speed network between the servers and the client. The performance of the strategy has been analyzed and is compared with the referred PAR (Play After Retrieval) strategy. Further, the strategy is also analyzed under availability condition which is a more realistic approach

    Executive Committee - Agenda, 9/21/1993

    Get PDF
    • 

    corecore