2,393 research outputs found

    Orthogonal Multiple Access with Correlated Sources: Feasible Region and Pragmatic Schemes

    Full text link
    In this paper, we consider orthogonal multiple access coding schemes, where correlated sources are encoded in a distributed fashion and transmitted, through additive white Gaussian noise (AWGN) channels, to an access point (AP). At the AP, component decoders, associated with the source encoders, iteratively exchange soft information by taking into account the source correlation. The first goal of this paper is to investigate the ultimate achievable performance limits in terms of a multi-dimensional feasible region in the space of channel parameters, deriving insights on the impact of the number of sources. The second goal is the design of pragmatic schemes, where the sources use "off-the-shelf" channel codes. In order to analyze the performance of given coding schemes, we propose an extrinsic information transfer (EXIT)-based approach, which allows to determine the corresponding multi-dimensional feasible regions. On the basis of the proposed analytical framework, the performance of pragmatic coded schemes, based on serially concatenated convolutional codes (SCCCs), is discussed

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes
    corecore