81 research outputs found

    A prototype of an energy-efficient MAGLEV train : a step towards cleaner train transport

    Get PDF
    The magnetic levitation (MAGLEV) train uses magnetic field to suspend, guide, and propel vehicle onto the track. The MAGLEV train provides a sustainable and cleaner solution for train transportation by significantly reducing the energy usage and greenhouse gas emissions as compared to traditional train transportation systems. In this paper, we propose an advanced control mechanism using an Arduino microcontroller that selectively energizes the electromagnets in a MAGLEV train system to provide dynamic stability and energy efficiency. We also design the prototype of an energy-efficient MAGLEV train that leverages our proposed control mechanism. In our MAGLEV train prototype, the levitation is achieved by creating a repulsive magnetic field between the train and the track using magnets mounted on the top-side of the track and bottom-side of the vehicle. The propulsion is performed by creating a repulsive magnetic field between the permanent magnets attached on the sides of the vehicle and electromagnets mounted at the center of the track using electrodynamic suspension (EDS). The electromagnets are energized via a control mechanism that is applied through an Arduino microcontroller. The Arduino microcontroller is programmed in such a way to propel and guide the vehicle onto the track by appropriate switching of the electromagnets. We use an infrared-based remote-control device for controlling the power, speed, and direction of the vehicle in both the forward and the backward direction. The proposed MAGLEV train control mechanism is novel, and according to the best of our knowledge is the first study of its kind that uses an Arduino-based microcontroller system for control mechanism. Experimental results illustrate that the designed prototype consumes only 144 W-hour (Wh) of energy as compared to a conventionally designed MAGLEV train prototype that consumes 1200 Wh. Results reveal that our proposed control mechanism and prototype model can reduce the total power consumption by 8.3 x as compared to the traditional MAGLEV train prototype, and can be applied to practical MAGLEV trains with necessary modifications. Thus, our proposed prototype and control mechanism serves as a first step towards cleaner engineering of train transportation systems

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Improving the energy efficiency of high speed rail and life cycle comparison with other modes of transport

    Get PDF
    The world energy crisis and global warming call for a reduction of energy consumption. High speed rail, increasingly viewed as an effective solution to inter-city passenger transportation challenge of the 21st century, has the significant ability of increasing passenger capacity and reducing journey time. The advent of high speed rail provided many research opportunities. So far studies have been contributed from different perspectives: economical, environmental, and technical. The main research gaps are: addressing the problem of the effects of route geometry on train energy consumption and quantifying the contributing factors towards differences in energy consumption between different types of high speed trains. In addition, this energy assessment cannot be based solely on the energy consumption in the operation phase. In the life cycle assessment of the whole railway system, the vehicle evaluation is relatively straightforward, but the infrastructure raises many difficult issues. In this thesis, an existing approach for modelling the traction energy of electric trains is developed and extended to simulate the train operation under different driving strategies. Baseline simulation is carried out to estimate the journey time and energy consumption of a High Speed 2(HS2) reference train running on the London-Birmingham proposed high speed route. The influence of route geometry and train configuration on energy consumption is investigated, based on the metric of energy consumption per passenger kilometre. Simulations are also carried out of different types of high speed rolling stock running on the proposed HS2 route, to identify the key areas of vehicle design which help to minimise the energy consumption of high speed rail travel. The life cycle assessment of railway infrastructure is carried out in four stages of a whole life cycle: production, operation, maintenance and disposal, the influence of route parameters on life cycle cost is also investigated. Finally, high speed rail is compared with competing modes of transport, i.e. the aircraft, the automobile and the conventional train, in both operational energy efficiency and whole life cycle analysis. The high speed rail transportation has great advantage over the road and air transport, giving a reduction of carbon emission by roughly 95%, among which the operation stage contributes the largest reduction.Open Acces

    Novel active magnetic bearings for direct drive C-Gen linear generator

    Get PDF
    This document presents a novel active magnetic levitation system. In the pursued of this endeavour different topics related with wave energy were explore. Climate change and energy security are the main motivation to pursued new options for non-fossil fuels energy generation. An overview of renewable energy and specifically of wave energy was presented. The potential for wave energy in The United Kingdom turn out to be 75 TWh/year from wave energy, 3 times more of what wind energy has produced in 2013. This means a massive impact on the energy market and emission reduction. In order to achieve this, improvements on wave energy devices have to be done. An overview of wave energy converters was covered selecting the C-Gen as the generator topology this document will base its studies. Linear generator bearings are desired to have long lifespan with long maintenance intervals. The objective is to come with an active magnetic levitation design that can replace traditional bearings augmenting the reliability of the system. Therefore magnetic bearings option have been reviewed and simulation experimentations has resulted in a novel active magnetic levitation system using an air-cored coils Halbach array acting over a levitation track. The configuration would generate bi directional repulsion forces with respect of the levitating body. Different software were used to analyse the magnetic field and forces generation. Additionally a prototype was built and tested to corroborate the results. As part of the modelling a mathematical model was explored and robust control implementation was also realised. Finally a scalability study of the device as well as a reliability analysis was done. Although the reliability studies shows an increase of ten times of the mean time to failure, the concept is not able to endure the loads acting on the generator unless the magnetic bearings became bigger than the generator and therefore economically unfeasible

    Train Track Misalignment Detection System

    Get PDF
    A feasible, portable and low-cost detection technique for train track misalignment was proposed. Currently, the detection of orientation movement of train along a flat head rail focuses on using different combination of optical sensor, accelerometer and gyro sensors, separated at several compartment and parts of the train. However, due to high implementation cost and complexity, these systems could not be widely implemented in all of the passenger-loaded compartments train and not suitable to switch from one platform to another, as it requires complex mounted installations. Hence, a MEMS-based Inertia Measurement Unit (IMU) was proposed to be implemented as an alternative low-cost and portable detection solution. The primary objective focuses on identifying potential misaligned track section through tri-axis Euler angles and tri-axis acceleration of the train. Equipped with an onboard Arduino ATMega328 microcontroller, the IMU was programmed through Arduino IDE by using USB-to-UART converter. Direction-cosine-matrix (DCM) algorithm was also implemented to detect and correct numerical error for the gyroscope via reference data from accelerometer. Practical implementation had also being conducted on both car and passenger-loaded train. These data were extracted onto PC for storage and post-processing via MATLAB. The measurements were analyzed and presented with discussion on track characteristics, train motion and noise. Also, analysis through the frequency spectrum over time provides insight onto possible misalignment region. The overall measurement analysis showed good correlation between actual track features and IMU sensor data
    • …
    corecore