692 research outputs found

    Design and optimization of a fuzzy-neural hybrid controller for an artificial muscle robotic arm using genetic algorithms

    Full text link

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton

    Get PDF
    Human intention has long been a primary emphasis in the field of electromyography (EMG) research. This being considered, the movement of the exoskeleton hand can be accurately predicted based on the user's preferences. The EMG is a nonlinear signal formed by muscle contractions as the human hand moves and easily captured noise signal from its surroundings. Due to this fact, this study aims to estimate wrist desired velocity based on EMG signals using ANN and FL mapping methods. The output was derived using EMG signals and wrist position were directly proportional to control wrist desired velocity. Ten male subjects, ranging in age from 21 to 40, supplied EMG signal data set used for estimating the output in single and double muscles experiments. To validate the performance, a physical model of an exoskeleton hand was created using Sim-mechanics program tool. The ANN used Levenberg training method with 1 hidden layer and 10 neurons, while FL used a triangular membership function to represent muscles contraction signals amplitude at different MVC levels for each wrist position. As a result, PID was substituted to compensate fluctuation of mapping outputs, resulting in a smoother signal reading while improving the estimation of wrist desired velocity performance. As a conclusion, ANN compensates for complex nonlinear input to estimate output, but it works best with large data sets. FL allowed designers to design rules based on their knowledge, but the system will struggle due to the large number of inputs. Based on the results achieved, FL was able to show a distinct separation of wrist desired velocity hand movement when compared to ANN for similar testing datasets due to the decision making based on rules setting setup by the designer

    Intelligent Control Architecture For Motion Learning in Robotics Applications

    Get PDF
    Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this purpose, a simulation environment and a set of simulated robots were created in order to test the control architecture. The robots were constructed with a simple geometry using links and joints. A fuzzy controller was designed to control the motors position. The control architecture design was based on subsumption and some AI methods that allowed the simulated robot to find and learn a set of motions based on targets. These methods were a genetic algorithm (GA) and a set of artificial neural networks (ANN). The GA was used to find the adequate robot movements for an specific target, while the ANNs were used to learn and perform such movements eficiently. The advantage of this approach was that, no knowledge of the environment or robot model is needed. The robot learns how to move its own body in order to achieve a determined task. In addition, the learned motions can be used to achieve complex movement execution in a further research. A set of experiments were performed in the simulator in order to show the performance of the control architecture in every one of its stages. The results showed that the proposed architecture was able to learn and perform basic movements of a robot independently of the environment or the robot defined structure.En esta Tesis, se investiga cómo las habilidades de movimiento en un robot, pueden ser aprendidas de forma automática. El objetivo principal fue dise~nar y probar una arquitectura de control capaz de aprender a mover adecuadamente diferentes robots simulados, mediante el uso de métodos de Inteligencia Artificial (IA). Con este propósito, se dise~no un entorno de simulación y un conjunto de robots simulados con el fin de probar la arquitectura de control. Los robots fueron construidos con una geometría muy simple utilizando enlaces y uniones (actuadores), y un controlador difuso fue dise~nado para controlar la posición de los actuadores. El dise~no de la arquitectura de control se basa en el concepto de subsunción (subsumption) y algunos métodos de IA que permiten al robot simulado determinar y aprender una serie de movimientos basados en objetivos. Los métodos usados son un algoritmo genético (GA) y un conjunto de redes neuronales artificiales (ANN). El GA se utiliza para encontrar los movimientos adecuados que el robot debe realizar para alcanzar un objetico específico, mientras que las redes neuronales se utilizan para aprender y realizar estos movimientos de forma eficiente. La ventaja de este enfoque es que, no es necesario conocer el entorno o tener un modelo del robot, sino que el robot aprende cómo mover su propio cuerpo en un ambiente definido con el fin de lograr una tarea determinada. Además, en una posterior investigación, es posible utilizar los movimientos aprendidos para realizar movimientos o tareas más complejas con los robots. Un conjunto de experimentos se llevaron a cabo en el simulador para mostrar el desempe~no de la arquitectura de control en cada una de sus etapas. Los resultados muestran que la arquitectura propuesta es capaz de aprender y realizar los movimientos del robot independientemente del medio ambiente o la estructura definida del robot.Maestrí

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    Intelligent active force control of human hand tremor using smart actuator

    Get PDF
    Patients suffering from Parkinson’s disease (PD) experience tremor which may generate a functional disability impacting their daily life activities. In order to provide a non-invasive solution, an active tremor control technique is proposed to suppress a human hand tremor. In this work, a hybrid controller which is a combination of the classic Proportional-Integral (PI) control and Active Force Control (AFC) strategy was employed. A test-rig is utilized as a practical test and verification platform of the controller design. A linear voice coil actuator (LVCA) was utilized as the main active suppressive element to control the tremor of hand model in collocation with the sensor. In order to validate the AFC scheme in real-time application, an accelerometer was used to obtain the measured values of the parameter necessary for the feedback control action. Meanwhile, a laser displacement sensor was used to quantify the displacement signal while hand shaking. To optimize the controller parameters, three different optimization techniques, namely the genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) techniques were incorporated into the hybrid PI+AFC controller to obtain a better performance in controlling tremor of the system. For the simulation study, two different models were introduced to represent the human hand in the form of a mathematical model with four degree-of-freedom (4 DOF) biodynamic response (BR) and a parametric model as the plant model. The main objective of this investigation is to optimize the PI and AFC parameters using three different types of intelligent optimization techniques. Then, the parameters that have been identified were tested through an experimental work to evaluate the performance of controller. The findings of the study demonstrate that the hybrid controller gives excellent performance in reducing the tremor error in comparison to the classic pure PI controller. Based on the fitness evaluation, the AFC-based scheme enhances the PI controller performance roughly around 10% for all optimization techniques. Besides that, an intelligent mechanism known as iterative learning control (ILC) was incorporated into the AFC loop (called as AFCAIL) to find the estimated mass parameter. In addition, a sensitivity analysis was presented to investigate the performance and robustness of the voice coil actuator with the proposed controller in real-time environment. The results prove that the AFCAIL controller gives an excellent performance in reducing the hand tremor error in comparison with the classic P, PI and hybrid PI+AFC controllers. These outcomes provide an important contribution towards achieving novel methods in suppressing hand tremor by means of intelligent control

    Robotic Smart Prosthesis Arm with BCI and Kansei / Kawaii / Affective Engineering Approach. Pt I: Quantum Soft Computing Supremacy

    Get PDF
    A description of the design stage and results of the development of the conceptual structure of a robotic prosthesis arm is given. As a result, a prototype of manmade prosthesis on a 3D printer as well as a foundation for computational intelligence presented. The application of soft computing technology (the first step of IT) allows to extract knowledge directly from the physical signal of the electroencephalogram, as well as to form knowledge-based intelligent robust control of the lower performing level taking into account the assessment of the patient’s emotional state. The possibilities of applying quantum soft computing technologies (the second step of IT) in the processes of robust filtering of electroencephalogram signals for the formation of mental commands and quantum supremacy simulation of robotic prosthetic arm discussed
    corecore