535 research outputs found

    Overview of Dynamic Facility Layout Planning as a Sustainability Strategy

    Full text link
    [EN] The facility layout design problem is significantly relevant within the business operations strategies framework and has emerged as an alternate strategy towards supply chain sustainability. However, its wide coverage in the scientific literature has focused mainly on the static planning approach and disregarded the dynamic approach, which is very useful in real-world applications. In this context, the present article offers a literature review of the dynamic facility layout problem (DFLP). First, a taxonomy of the reviewed papers is proposed based on the problem formulation current trends (related to the problem type, planning phase, planning approach, number of facilities, number of floors, number of departments, space consideration, department shape, department dimensions, department area, and materials handling configuration); the mathematical modeling approach (regarding the type of model, type of objective function, type of constraints, nature of market demand, type of data, and distance metric), and the considered solution approach. Then, the extent to which recent research into DFLP has contributed to supply chain sustainability by addressing its three performance dimensions (economic, environmental, social) is described. Finally, some future research guidelines are provided.This research was funded by the Spanish Ministry of Science, Innovation and Universities Project CADS4.0, grant number RTI2018-101344-B-I00; and the Valencian Community ERDF Programme 2014-2020, grant number IDIFEDER/2018/025.Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2020). Overview of Dynamic Facility Layout Planning as a Sustainability Strategy. Sustainability. 12(19):1-16. https://doi.org/10.3390/su12198277S1161219Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93-103. doi:10.1016/j.jmsy.2015.09.003Kheirkhah, A., Navidi, H., & Messi Bidgoli, M. (2015). Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Transactions on Engineering Management, 62(3), 396-410. doi:10.1109/tem.2015.2437195Altuntas, S., & Selim, H. (2012). Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 39(1), 3-13. doi:10.1016/j.eswa.2011.06.045Ku, M.-Y., Hu, M. H., & Wang, M.-J. (2011). Simulated annealing based parallel genetic algorithm for facility layout problem. International Journal of Production Research, 49(6), 1801-1812. doi:10.1080/00207541003645789Navidi, H., Bashiri, M., & Messi Bidgoli, M. (2012). A heuristic approach on the facility layout problem based on game theory. International Journal of Production Research, 50(6), 1512-1527. doi:10.1080/00207543.2010.550638Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. doi:10.1007/s00170-017-0895-8Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Carter, C. R., & Washispack, S. (2018). Mapping the Path Forward for Sustainable Supply Chain Management: A Review of Reviews. Journal of Business Logistics, 39(4), 242-247. doi:10.1111/jbl.12196Roy, V., Schoenherr, T., & Charan, P. (2018). The thematic landscape of literature in sustainable supply chain management (SSCM). International Journal of Operations & Production Management, 38(4), 1091-1124. doi:10.1108/ijopm-05-2017-0260Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. doi:10.1016/j.ejor.2017.10.036Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. International Journal of Business Innovation and Research, 7(2), 143. doi:10.1504/ijbir.2013.052576Sánchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & Ramírez-Barreto, M. E. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies. Sustainability, 12(17), 6972. doi:10.3390/su12176972Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. doi:10.1016/j.jclepro.2016.04.150Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. doi:10.1016/j.psep.2018.05.009Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. Production and Operations Management, 27(4), 756-773. doi:10.1111/poms.12822Roy, S., Das, M., Ali, S. M., Raihan, A. S., Paul, S. K., & Kabir, G. (2020). Evaluating strategies for environmental sustainability in a supply chain of an emerging economy. Journal of Cleaner Production, 262, 121389. doi:10.1016/j.jclepro.2020.121389Morais, D. O. C., & Silvestre, B. S. (2018). Advancing social sustainability in supply chain management: Lessons from multiple case studies in an emerging economy. Journal of Cleaner Production, 199, 222-235. doi:10.1016/j.jclepro.2018.07.097Stindt, D. (2017). A generic planning approach for sustainable supply chain management - How to integrate concepts and methods to address the issues of sustainability? Journal of Cleaner Production, 153, 146-163. doi:10.1016/j.jclepro.2017.03.126MOSLEMIPOUR, G., LEE, T. S., & LOONG, Y. T. (2017). Performance Analysis of Intelligent Robust Facility Layout Design. Chinese Journal of Mechanical Engineering, 30(2), 407-418. doi:10.1007/s10033-017-0073-9Emami, S., & S. Nookabadi, A. (2013). Managing a new multi-objective model for the dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2215-2228. doi:10.1007/s00170-013-4820-5Al Hawarneh, A., Bendak, S., & Ghanim, F. (2019). Dynamic facilities planning model for large scale construction projects. Automation in Construction, 98, 72-89. doi:10.1016/j.autcon.2018.11.021Pournaderi, N., Ghezavati, V. R., & Mozafari, M. (2019). Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Applied Sciences, 1(8). doi:10.1007/s42452-019-0865-xTuranoğlu, B., & Akkaya, G. (2018). A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Systems with Applications, 98, 93-104. doi:10.1016/j.eswa.2018.01.011Moslemipour, G., Lee, T. S., & Rilling, D. (2011). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27. doi:10.1007/s00170-011-3614-xTebaldi, L., Bigliardi, B., & Bottani, E. (2018). Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability, 10(11), 3946. doi:10.3390/su10113946Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. doi:10.1016/j.resconrec.2018.10.009Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi:10.1016/j.jclepro.2019.119869Boar, A., Bastida, R., & Marimon, F. (2020). A Systematic Literature Review. Relationships between the Sharing Economy, Sustainability and Sustainable Development Goals. Sustainability, 12(17), 6744. doi:10.3390/su12176744Novais, L., Maqueira, J. M., & Ortiz-Bas, Á. (2019). A systematic literature review of cloud computing use in supply chain integration. Computers & Industrial Engineering, 129, 296-314. doi:10.1016/j.cie.2019.01.056Masi, D., Day, S., & Godsell, J. (2017). Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability, 9(9), 1602. doi:10.3390/su9091602Zavala-Alcívar, A., Verdecho, M.-J., & Alfaro-Saiz, J.-J. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability, 12(16), 6300. doi:10.3390/su12166300Li, K., Rollins, J., & Yan, E. (2017). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20. doi:10.1007/s11192-017-2622-5Kulturel-Konak, S., & Konak, A. (2014). A large-scale hybrid simulated annealing algorithm for cyclic facility layout problems. Engineering Optimization, 47(7), 963-978. doi:10.1080/0305215x.2014.933825Madhusudanan Pillai, V., Hunagund, I. B., & Krishnan, K. K. (2011). Design of robust layout for Dynamic Plant Layout Problems. Computers & Industrial Engineering, 61(3), 813-823. doi:10.1016/j.cie.2011.05.014Peng, Y., Zeng, T., Fan, L., Han, Y., & Xia, B. (2018). An Improved Genetic Algorithm Based Robust Approach for Stochastic Dynamic Facility Layout Problem. Discrete Dynamics in Nature and Society, 2018, 1-8. doi:10.1155/2018/1529058McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171-182. doi:10.1016/j.ejor.2009.02.028Yang, C.-L., Chuang, S.-P., & Hsu, T.-S. (2010). A genetic algorithm for dynamic facility planning in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52(1-4), 303-309. doi:10.1007/s00170-010-2733-0Abedzadeh, M., Mazinani, M., Moradinasab, N., & Roghanian, E. (2012). Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 65(1-4), 197-211. doi:10.1007/s00170-012-4160-xGuan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Computers & Industrial Engineering, 63(1), 98-108. doi:10.1016/j.cie.2012.01.016Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279-4293. doi:10.1080/00207543.2011.613863Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39(11), 2642-2658. doi:10.1016/j.cor.2012.01.012McKendall, A. R., & Liu, W.-H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878. doi:10.1080/00207543.2010.545446Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm optimisation for dynamic facility layout problem. International Journal of Production Research, 51(14), 4325-4335. doi:10.1080/00207543.2013.774486Kaveh, M., Dalfard, V. M., & Amiri, S. (2013). A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Computing and Applications, 24(5), 1179-1190. doi:10.1007/s00521-013-1339-5KIA, R., JAVADIAN, N., PAYDAR, M. M., & SAIDI-MEHRABAD, M. (2013). A SIMULATED ANNEALING FOR INTRA-CELL LAYOUT DESIGN OF DYNAMIC CELLULAR MANUFACTURING SYSTEMS WITH ROUTE SELECTION, PURCHASING MACHINES AND CELL RECONFIGURATION. Asia-Pacific Journal of Operational Research, 30(04), 1350004. doi:10.1142/s0217595913500048Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5-8), 929-943. doi:10.1007/s00170-012-4229-6Samarghandi, H., Taabayan, P., & Behroozi, M. (2013). Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2701-2715. doi:10.1007/s00170-012-4685-zYu-Hsin Chen, G. (2013). A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems. International Journal of Production Economics, 142(2), 362-371. doi:10.1016/j.ijpe.2012.12.012Bozorgi, N., Abedzadeh, M., & Zeinali, M. (2014). Tabu search heuristic for efficiency of dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 689-703. doi:10.1007/s00170-014-6460-9CHEN, G. Y.-H., & LO, J.-C. (2014). DYNAMIC FACILITY LAYOUT WITH MULTI-OBJECTIVES. Asia-Pacific Journal of Operational Research, 31(04), 1450027. doi:10.1142/s0217595914500274Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7-8), 1871-1885. doi:10.1007/s00521-014-1678-xKia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218-232. doi:10.1016/j.jmsy.2013.12.005Nematian, J. (2014). A robust single row facility layout problem with fuzzy random variables. The International Journal of Advanced Manufacturing Technology, 72(1-4), 255-267. doi:10.1007/s00170-013-5564-yPourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing, 24, 457-469. doi:10.1016/j.asoc.2014.06.051Derakhshan Asl, A., & Wong, K. Y. (2015). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317-1336. doi:10.1007/s10845-015-1053-5Li, L., Li, C., Ma, H., & Tang, Y. (2015). An Optimization Method for the Remanufacturing Dynamic Facility Layout Problem with Uncertainties. Discrete Dynamics in Nature and Society, 2015, 1-11. doi:10.1155/2015/685408Ulutas, B., & Islier, A. A. (2015). Dynamic facility layout problem in footwear industry. Journal of Manufacturing Systems, 36, 55-61. doi:10.1016/j.jmsy.2015.03.004Zarea Fazlelahi, F., Pournader, M., Gharakhani, M., & Sadjadi, S. J. (2016). A robust approach to design a single facility layout plan in dynamic manufacturing environments using a permutation-based genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2264-2274. doi:10.1177/0954405415615728Hosseini, S. S., & Seifbarghy, M. (2016). A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem. RAIRO - Operations Research, 50(4-5), 869-890. doi:10.1051/ro/2016057Pourvaziri, H., & Pierreval, H. (2017). Dynamic facility layout problem based on open queuing network theory. European Journal of Operational Research, 259(2), 538-553. doi:10.1016/j.ejor.2016.11.011Tayal, A., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1-2), 489-514. doi:10.1007/s10479-016-2237-xKumar, R., & Singh, S. P. (2017). A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems. Engineering Optimization, 49(11), 1848-1867. doi:10.1080/0305215x.2016.1274205Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052-1063. doi:10.1016/j.ejor.2017.04.002Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146-157. doi:10.1016/j.ijpe.2016.03.019Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem—A general layout formulation. Computers & Operations Research, 88, 187-207. doi:10.1016/j.cor.2017.06.025Li, J., Tan, X., & Li, J. (2018). Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/6040561Vitayasak, S., & Pongcharoen, P. (2018). Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Systems with Applications, 98, 129-152. doi:10.1016/j.eswa.2018.01.005Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7(1), 109-124. doi:10.1080/21693277.2019.1602486Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. Journal of Intelligent Manufacturing, 18(2), 273-284. doi:10.1007/s10845-007-0020-1Sharma, P., & Singhal, S. (2016). Implementation of fuzzy TOPSIS methodology in selection of procedural approach for facility layout planning. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1485-1493. doi:10.1007/s00170-016-8878-8Bukchin, Y., & Tzur, M. (2014). A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. International Journal of Production Research, 52(24), 7339-7359. doi:10.1080/00207543.2014.930534Meller, R. D., Kirkizoglu, Z., & Chen, W. (2010). A new optimization model to support a bottom-up approach to facility design. Computers & Operations Research, 37(1), 42-49. doi:10.1016/j.cor.2009.03.018Feng, J., & Che, A. (2018). Novel integer linear programming models for the facility layout problem with fixed-size rectangular departments. Computers & Operations Research, 95, 163-171. doi:10.1016/j.cor.2018.03.013Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46-62. doi:10.1016/j.eswa.2017.07.049Ahmadi, A., Pishvaee, M. S., & Akbari Jokar, M. R. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. doi:10.1016/j.cie.2017.03.015Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. doi:10.1016/j.arcontrol.2007.04.001Grobelny, J., & Michalski, R. (2017). A novel version of simulated annealing based on linguistic patterns for solving facility layout problems. Knowledge-Based Systems, 124, 55-69. doi:10.1016/j.knosys.2017.03.001Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer programming model for a multi-floor facility layout. International Journal of Production Research, 51(14), 4223-4239. doi:10.1080/00207543.2012.75348

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey

    Get PDF
    Facility Layout Problem (FLP) is a NP-hard problem concerned with the arrangement of facilities as to minimize the distance travelled between all pairs of facilities. Many exact and approximate approaches have been proposed with an extensive applicability to deal with this problem. This paper studies the fundamentals of some well-known heuristics and metaheuristics used in solving the FLPs. It is hoped that this paper will trigger researchers for in-depth studies in FLPs looking into more specific interest such as equal or unequal FLPs

    The evolution of cell formation problem methodologies based on recent studies (1997-2008): review and directions for future research

    Get PDF
    This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers

    Facility layout planning. An extended literature review

    Full text link
    [EN] Facility layout planning (FLP) involves a set of design problems related to the arrangement of the elements that shape industrial production systems in a physical space. The fact that they are considered one of the most important design decisions as part of business operation strategies, and their proven repercussion on production systems' operation costs, efficiency and productivity, mean that this theme has been widely addressed in science. In this context, the present article offers a scientific literature review about FLP from the operations management perspective. The 232 reviewed articles were classified as a large taxonomy based on type of problem, approach and planning stage and characteristics of production facilities by configuring the material handling system and methods to generate and assess layout alternatives. We stress that the generation of layout alternatives was done mainly using mathematical optimisation models, specifically discrete quadratic programming models for similar sized departments, or continuous linear and non-linear mixed integer programming models for different sized departments. Other approaches followed to generate layout alternatives were expert's knowledge and specialised software packages. Generally speaking, the most frequent solution algorithms were metaheuristics.The research leading to these results received funding from the European Union H2020 Program under grant agreement No 958205 `Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)'and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 `Optimisation of zerodefectsproduction technologies enabling supply chains 4.0 (CADS4.0)'Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2021). Facility layout planning. An extended literature review. International Journal of Production Research. 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.189717637773816591

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    Optimum Allocation of Inspection Stations in Multistage Manufacturing Processes by Using Max-Min Ant System

    Get PDF
    In multistage manufacturing processes it is common to locate inspection stations after some or all of the processing workstations. The purpose of the inspection is to reduce the total manufacturing cost, resulted from unidentified defective items being processed unnecessarily through subsequent manufacturing operations. This total cost is the sum of the costs of production, inspection and failures (during production and after shipment). Introducing inspection stations into a serial multistage manufacturing process, although constituting an additional cost, is expected to be a profitable course of action. Specifically, at some positions the associated inspection costs will be recovered from the benefits realised through the detection of defective items, before wasting additional cost by continuing to process them. In this research, a novel general cost modelling for allocating a limited number of inspection stations in serial multistage manufacturing processes is formulated. In allocation of inspection station (AOIS) problem, as the number of workstations increases, the number of inspection station allocation possibilities increases exponentially. To identify the appropriate approach for the AOIS problem, different optimisation methods are investigated. The MAX-MIN Ant System (MMAS) algorithm is proposed as a novel approach to explore AOIS in serial multistage manufacturing processes. MMAS is an ant colony optimisation algorithm that was designed originally to begin an explorative search phase and, subsequently, to make a slow transition to the intensive exploitation of the best solutions found during the search, by allowing only one ant to update the pheromone trails. Two novel heuristics information for the MMAS algorithm are created. The heuristic information for the MMAS algorithm is exploited as a novel means to guide ants to build reasonably good solutions from the very beginning of the search. To improve the performance of the MMAS algorithm, six local search methods which are well-known and suitable for the AOIS problem are used. Selecting relevant parameter values for the MMAS algorithm can have a great impact on the algorithm’s performance. As a result, a method for tuning the most influential parameter values for the MMAS algorithm is developed. The contribution of this research is, for the first time, a methodology using MMAS to solve the AOIS problem in serial multistage manufacturing processes has been developed. The methodology takes into account the constraints on inspection resources, in terms of a limited number of inspection stations. As a result, the total manufacturing cost of a product can be reduced, while maintaining the quality of the product. Four numerical experiments are conducted to assess the MMAS algorithm for the AOIS problem. The performance of the MMAS algorithm is compared with a number of other methods this includes the complete enumeration method (CEM), rule of thumb, a pure random search algorithm, particle swarm optimisation, simulated annealing and genetic algorithm. The experimental results show that the effectiveness of the MMAS algorithm lies in its considerably shorter execution time and robustness. Further, in certain conditions results obtained by the MMAS algorithm are identical to the CEM. In addition, the results show that applying local search to the MMAS algorithm has significantly improved the performance of the algorithm. Also the results demonstrate that it is essential to use heuristic information with the MMAS algorithm for the AOIS problem, in order to obtain a high quality solution. It was found that the main parameters of MMAS include the pheromone trail intensity, heuristic information and evaporation of pheromone are less sensitive within the specified range as the number of workstations is significantly increased
    corecore