3,653 research outputs found

    Decentralized or centralized production : impacts to the environment, industry, and the economy

    Get PDF
    Since product take-back is mandated in Europe, and has effects for producers worldwide including the U.S., designing efficient forward and reverse supply chain networks is becoming essential for business viability. Centralizing production facilities may reduce costs but perhaps not environmental impacts. Decentralizing a supply chain may reduce transportation environmental impacts but increase capital costs. Facility location strategies of centralization or decentralization are tested for companies with supply chains that both take back and manufacture products. Decentralized and centralized production systems have different effects on the environment, industry and the economy. Decentralized production systems cluster suppliers within the geographical market region that the system serves. Centralized production systems have many suppliers spread out that meet all market demand. The point of this research is to help further the understanding of company decision-makers about impacts to the environment and costs when choosing a decentralized or centralized supply chain organizational strategy. This research explores; what degree of centralization for a supply chain makes the most financial and environmental sense for siting facilities; and which factories are in the best location to handle the financial and environmental impacts of particular processing steps needed for product manufacture. This research considered two examples of facility location for supply chains when products are taken back; the theoretical case involved shoe resoling and a real world case study considered the location of operations for a company that reclaims multiple products for use as material inputs. For the theoretical example a centralized strategy to facility location was optimal: whereas for the case study a decentralized strategy to facility location was best. In conclusion, it is not possible to say that a centralized or decentralized strategy to facility location is in general best for a company that takes back products. Each company’s specific concerns, needs, and supply chain details will determine which degree of centralization creates the optimal strategy for siting their facilities

    A Two-Echelon Location-inventory Model for a Multi-product Donation-demand Driven Industry

    Get PDF
    This study involves a joint bi-echelon location inventory model for a donation-demand driven industry in which Distribution Centers (DC) and retailers (R) exist. In this model, we confine the variables of interest to include; coverage radius, service level, and multiple products. Each retailer has two classes of product flowing to and from its assigned DC i.e. surpluses and deliveries. The proposed model determines the number of DCs, DC locations, and assignments of retailers to those DCs so that the total annual cost including: facility location costs, transportation costs, and inventory costs are minimized. Due to the complexity of problem, the proposed model structure allows for the relaxation of complicating terms in the objective function and the use of robust branch-and-bound heuristics to solve the non-linear, integer problem. We solve several numerical example problems and evaluate solution performance

    Selection of return channels and recovery options for used products

    Get PDF
    Due to legal, economic and socio-environmental factors, reverse logistics practices and extended producer responsibility have developed into a necessity in many countries. The end results and expectations may differ, but the motivation remains the same. Two significant components in a reverse logistics system -product recovery options and return channels - are the focus of this thesis. The two main issues examined are allocation of the returned products to recovery options, and selection of the collection methods for product returns. The initial segment of this thesis involves the formulation of a linear programming model to determine the optimal allocation of returned products differing in quality to specific recovery options. This model paves the way for a study on the effects of flexibility on product recovery allocation. A computational example utilising experimental data was presented to demonstrate the viability of the proposed model. The results revealed that in comparison to a fixed match between product qualities and recovery options, the product recovery operation appeared to be more profitable with a flexible allocation. The second segment of this thesis addresses the methods employed for the initial collection of returned products. A mixed integer nonlinear programming model was developed to facilitate the selection of optimal collection methods for these products. This integrated model takes three different initial collection methods into consideration. The model is used to solve an illustrative example optimally. However, as the complexity of the issue renders this process ineffective in the face of larger problems, the Lagrangian relaxation method was proposed to generate feasible solutions within reasonable computational times. This method was put to the test and the results were found to be encouraging

    A Mathematical Model to Improve the Performance of Logistics Network

    Full text link
    The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model

    A Mathematical Model to Improve the Performance of Logistics Network

    Get PDF
    The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimizatio

    Toward Robust Manufacturing Scheduling: Stochastic Job-Shop Scheduling

    Full text link
    Manufacturing plays a significant role in promoting economic development, production, exports, and job creation, which ultimately contribute to improving the quality of life. The presence of manufacturing defects is, however, inevitable leading to products being discarded, i.e. scrapped. In some cases, defective products can be repaired through rework. Scrap and rework cause a longer completion time, which can contribute to the order being shipped late. In addition, complex manufacturing scheduling becomes much more challenging when the above uncertainties are present. Motivated by the presence of uncertainties as well as combinatorial complexity, this paper addresses the challenge illustrated through a case study of stochastic job-shop scheduling problems arising within low-volume high-variety manufacturing. To ensure on-time delivery, high-quality solutions are required, and near-optimal solutions must be obtained within strict time constraints to ensure smooth operations on the job-shop floor. To efficiently solve the stochastic job-shop scheduling (JSS) problem, a recently-developed Surrogate "Level-Based" Lagrangian Relaxation is used to reduce computational effort while efficiently exploiting the geometric convergence potential inherent to Polyak's step-sizing formula thereby leading to fast convergence. Numerical testing demonstrates that the new method is more than two orders of magnitude faster as compared to commercial solvers

    On the inventory routing problem with stationary stochastic demand rate

    Get PDF
    One of the most significant paradigm shifts of present business management is that individual businesses no longer participate as solely independent entities, but rather as supply chains (Lambert and Cooper, 2000). Therefore, the management of multiple relationships across the supply chain such as flow of materials, information, and finances is being referred to as supply chain management (SCM). SCM involves coordinating and integrating these multiple relationships within and among companies, so that it can improve the global performance of the supply chain. In this dissertation, we discuss the issue of integrating the two processes in the supply chain related, respectively, to inventory management and routing policies. The challenging problem of coordinating the inventory management and transportation planning decisions in the same time, is known as the inventory routing problem (IRP). The IRP is one of the challenging optimization problems in logis-tics and supply chain management. It aims at optimally integrating inventory control and vehicle routing operations in a supply network. In general, IRP arises as an underlying optimization problem in situations involving simultaneous optimization of inventory and distribution decisions. Its main goal is to determine an optimal distribution policy, consisting of a set of vehicle routes, delivery quantities and delivery times that minimizes the total inventory holding and transportation costs. This is a typical logistical optimization problem that arises in supply chains implementing a vendor managed inventory (VMI) policy. VMI is an agreement between a supplier and his regular retailers according to which retailers agree to the alternative that the supplier decides the timing and size of the deliveries. This agreement grants the supplier the full authority to manage inventories at his retailers'. This allows the supplier to act proactively and take responsibility for the inventory management of his regular retailers, instead of reacting to the orders placed by these retailers. In practice, implementing policies such as VMI has proven to considerably improve the overall performance of the supply network, see for example Lee and Seungjin (2008), Andersson et al. (2010) and Coelho et al. (2014). This dissertation focuses mainly on the single-warehouse, multiple-retailer (SWMR) system, in which a supplier serves a set of retailers from a single warehouse. In the first situation, we assume that all retailers face a deterministic, constant demand rate and in the second condition, we assume that all retailers consume the product at a stochastic stationary rate. The primary objective is to decide when and how many units to be delivered from the supplier to the warehouse and from the warehouse to retailers so as to minimize total transportation and inventory holding costs over the finite horizon without any shortages

    Real-time optimization of an integrated production-inventory-distribution problem.

    Get PDF
    In today\u27s competitive business environment, companies face enormous pressure and must continuously search for ways to design new products, manufacture and distribute them in an efficient and effective fashion. After years of focusing on reduction in production and operation costs, companies are beginning to look into distribution activities as the last frontier for cost reduction. In addition, an increasing number of companies, large and small, are focusing their efforts on their core competencies which are critical to survive. This results in a widespread practice in industry that companies outsource one or more than one logistics functions to third party logistics providers. By using such logistics expertise, they can obtain a competitive advantage both in cost and time efficiency, because the third party logistics companies already have the equipment, system and experience and are ready to help to their best efforts. In this dissertation, we developed an integrated optimization model of production, inventory and distribution with the goal to coordinate important and interrelated decisions related to production schedules, inventory policy and truckload allocation. Because outsourcing logistics functions to third party logistics providers is becoming critical for a company to remain competitive in the market place; we also included an important decision of selecting carriers with finite truckload and drivers for both inbound and outbound shipments in the model. The integrated model is solved by modified Benders decomposition which solves the master problem by a genetic algorithm. Computational results on test problems of various sizes are provided to show the effectiveness of the proposed solution methodology. We also apply this proposed algorithm on a real distribution problem faced by a large national manufacturer and distributor. It shows that such a complex distribution network with 22 plants, 7 distribution centers, 8 customer zones, 9 products, 16 inbound and 16 outbound shipment carriers in a 12-month planning period can be redesigned within 33 hours. In recent years, multi-agent simulation has been a preferred approach to solve logistics and distribution problems, since these problems are autonomous, distributive, complex, heterogeneous and decentralized in nature and they require extensive intelligent decision making. Another important part in this dissertation involved a development of an agent-based simulation model to cooperate with the optimal solution given by the optimization model. More specifically, the solution given by the optimization model can be inputted as the initial condition of the agent-based simulation model. The agent-based simulation model can incorporate many other factors to be considered in the real world, but optimization cannot handle these as needed. The agent-based simulation model can also incorporate some dynamics we may encounter in the real operations, and it can react to these dynamics in real time. Various types of entities in the entire distribution system can be modeled as intelligent agents, such as suppliers, carriers and customers. In order to build the simulation model more realistic, a sealed bid multiunit auction with an introduction of three parameters a, Ăź and y is well designed. With the help of these three parameters, each agent makes a better decision in a simple and fast manner, which is the key to realizing real-time decision making. After building such a multi-agent system with agent-based simulation approach, it supports more flexible and comprehensive modeling capabilities which are difficult to realize in a general optimization model. The simulation model is tested and validated on an industrial-sized problem. Numerical results of the agent-based simulation model suggest that with appropriate setting of three parameters the model can precisely represent the preference and interest of different decision makers
    • …
    corecore