6,752 research outputs found

    Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays

    No full text
    The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the ?1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications

    Feedback Control for Electron Beam Lithography

    Get PDF
    Scanning-electron-beam lithography (SEBL) is the primary technology to generate arbitrary features at the nano-scale. However, pattern placement accuracy still remains poor compared to its resolution due to the open-loop nature of SEBL systems. Vibration, stray electromagnetic fields, deflection distortion and hysteresis, substrate charging, and other factors prevent the electron-beam from reaching its target position and one has no way to determine the actual beam position during patterning with conventional systems. To improve the pattern placement accuracy, spatial-phase-locked electron-beam lithography (SPLEBL) provides feedback control of electron-beam position by monitoring the secondary electron signal from electron-transparent fiducial grids on the substrate. While scanning the electron beam over the fiducial grids, the phase of the grid signal is analyzed to estimate the electron-beam position error; then the estimates are sent back to beam deflection system to correct the position error. In this way, closed-loop control is provided to ensure pattern placement accuracy. The implementation of spatial-phase-locking on high speed field-programmable gate array (FPGA) provides a low-cost method to create a nano-manufacturing platform with 1 nm precision and significantly improved throughput. Shot-to-shot, or pixel-to-pixel, dose variation during EBL is a significant practical and fundamental problem. Dose variations associated with charging, electron source instability, optical system drift, and ultimately shot noise in the beam itself conspire to increase critical dimension variability and line width roughness and to limit the throughput. It would be an important improvement to e-beam patterning technology if real-time feedback control of electron-dose were provided to improve pattern quality and throughput even beyond the shot noise limit. A novel approach is proposed in this document to achieve the real-time dose control based on the measurement of electron arrival at the sample to be patterned, rather than from the source or another point in the electron-optical system. A dose control algorithm, implementation on FPGA, and initial experiment results for the real-time feedback dose control on the e-beam patterning tool is also presented

    Design of weak 1-D bragg grating filters in SOI waveguides using volume holography techniques

    Get PDF
    To answer the growing need for more versatile integrated spectral filters, we show that weak one-dimensional gratings can be designed towards any desired target spectrum. We follow a very straightforward design procedure to demonstrate the performance of these devices. Measurements and simulations show a very good correspondence with the target spectra. By analyzing the results, we also found that the design procedure can be refined by using simulated reflections, instead of relying on the calculated Fresnel reflections

    Helium Ion Microscopy

    Get PDF
    Helium Ion Microcopy (HIM) based on Gas Field Ion Sources (GFIS) represents a new ultra high resolution microscopy and nano-fabrication technique. It is an enabling technology that not only provides imagery of conducting as well as uncoated insulating nano-structures but also allows to create these features. The latter can be achieved using resists or material removal due to sputtering. The close to free-form sculpting of structures over several length scales has been made possible by the extension of the method to other gases such as Neon. A brief introduction of the underlying physics as well as a broad review of the applicability of the method is presented in this review.Comment: Revised versio
    • …
    corecore