1,117 research outputs found

    A novel random neural network based approach for intrusion detection systems

    Get PDF

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    An Efficient Deep-Learning-Based Detection and Classification System for Cyber-Attacks in IoT Communication Networks

    Get PDF
    With the rapid expansion of intelligent resource-constrained devices and high-speed communication technologies, the Internet of Things (IoT) has earned wide recognition as the primary standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to cyber-attacks due to the constraints in computation, storage, and communication capacity of the endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by slightly mutating formerly established cyber-attacks to produce a new attack that tends to be treated as normal traffic through the IoT network. From the other side, the influence of coupling the deep learning techniques with the cybersecurity field has become a recent inclination of many security applications due to their impressive performance. In this paper, we provide the comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyber-attacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT based Intrusion Detection and Classification System using Convolutional Neural Network). The proposed IoT-IDCS-CNN makes use of high-performance computing that employs the robust Compute Unified Device Architectures (CUDA) based Nvidia GPUs (Graphical Processing Units) and parallel processing that employs high-speed I9-core-based Intel CPUs. In particular, the proposed system is composed of three subsystems: a feature engineering subsystem, a feature learning subsystem, and a traffic classification subsystem. All subsystems were developed, verified, integrated, and validated in this research. To evaluate the developed system, we employed the Network Security Laboratory-Knowledge Discovery Databases (NSL-KDD) dataset, which includes all the key attacks in IoT computing. The simulation results demonstrated a greater than 99.3% and 98.2% cyber-attack classification accuracy for the binary-class classifier (normal vs. anomaly) and the multiclass classifier (five categories), respectively. The proposed system was validated using a K-fold cross-validation method and was evaluated using the confusion matrix parameters (i.e., true negative (TN), true positive (TP), false negative (FN), false positive (FP)), along with other classification performance metrics, including precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN system outperformed many recent machine-learning-based IDCS systems in the same area of study

    A Machine-Synesthetic Approach To DDoS Network Attack Detection

    Full text link
    In the authors' opinion, anomaly detection systems, or ADS, seem to be the most perspective direction in the subject of attack detection, because these systems can detect, among others, the unknown (zero-day) attacks. To detect anomalies, the authors propose to use machine synesthesia. In this case, machine synesthesia is understood as an interface that allows using image classification algorithms in the problem of detecting network anomalies, making it possible to use non-specialized image detection methods that have recently been widely and actively developed. The proposed approach is that the network traffic data is "projected" into the image. It can be seen from the experimental results that the proposed method for detecting anomalies shows high results in the detection of attacks. On a large sample, the value of the complex efficiency indicator reaches 97%.Comment: 12 pages, 2 figures, 5 tables. Accepted to the Intelligent Systems Conference (IntelliSys) 201

    Machine Learning for Cyberattack Detection

    Get PDF
    Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, and the application of new learning techniques to cybersecurity have not been investigate yet. Current technology trends have led to an abundance of household items containing microprocessors all connected within a private network. Thus, network intrusion detection is essential for keeping these networks secure. However, network intrusion detection can be extremely taxing on battery operated devices. The presented work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. To show that this system can operate at low power, the algorithm was executed on two commercially available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these algorithms at low power. Our results show that these low power implementations are feasible, and a scan rate of more than 226,000 packets per second can be achieved from a system that requires approximately 5W to operate with greater than 99% accuracy

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy
    corecore