384 research outputs found

    A Novel Real-Time MATLAB/Simulink/LEGO EV3 Platform for Academic Use in Robotics and Computer Science

    Get PDF
    Over the last years, mobile robot platforms are having a key role in education worldwide. Among others, LEGO Robots and MATLAB/Simulink are being used mainly in universities to improve the teaching experience. Most LEGO systems used in the literature are based on NXT, as the EV3 version is relatively recent. In contrast to the previous versions, the EV3 allows the development of real-time applications for teaching a wide variety of subjects as well as conducting research experiments. The goal of the research presented in this paper was to develop and validate a novel real-time educational platform based on the MATLAB/Simulink package and the LEGO EV3 brick for academic use in the fields of robotics and computer science. The proposed framework is tested here in different university teaching situations and several case studies are presented in the form of interactive projects developed by students. Without loss of generality, the platform is used for testing different robot path planning algorithms. Classical algorithms like rapidly-exploring random trees or artificial potential fields, developed by robotics researchers, are tested by bachelor students, since the code is freely available on the Internet. Furthermore, recent path planning algorithms developed by the authors are also tested in the platform with the aim of detecting the limits of its applicability. The restrictions and advantages of the proposed platform are discussed in order to enlighten future educational applications

    Lego Based Computer Communication for Business and Learning

    Get PDF

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels

    E-Learning

    Get PDF
    Technology development, mainly for telecommunications and computer systems, was a key factor for the interactivity and, thus, for the expansion of e-learning. This book is divided into two parts, presenting some proposals to deal with e-learning challenges, opening up a way of learning about and discussing new methodologies to increase the interaction level of classes and implementing technical tools for helping students to make better use of e-learning resources. In the first part, the reader may find chapters mentioning the required infrastructure for e-learning models and processes, organizational practices, suggestions, implementation of methods for assessing results, and case studies focused on pedagogical aspects that can be applied generically in different environments. The second part is related to tools that can be adopted by users such as graphical tools for engineering, mobile phone networks, and techniques to build robots, among others. Moreover, part two includes some chapters dedicated specifically to e-learning areas like engineering and architecture

    Robomaths: Robotics to Learn Matematics in a Architecture Degree

    Get PDF
    The abstract part of mathematics is a difficult matter included in many subjects in university degrees. Specifically, in architecture degrees students lack interest in this topic if they don’t experience its immediate application. In addition, technological skills are required at every educational level and the students of these degrees are usually more interested in art than in technology. With the aim of encouraging architecture students' interest in mathematics and technology, a methodology is presented here that includes the use of robotics in maths lectures. The key idea is to make the abstract part of mathematics understandable by means of robots

    Experiences on a motivational learning approach for robotics in undergraduate courses

    Get PDF
    This paper presents an educational experience carried out in robotics undergraduate courses from two different degrees: Computer Science and Industrial Engineering, having students with diverse capabilities and motivations. The experience compares two learning strategies for the practical lessons of such courses: one relies on code snippets in Matlab to cope with typical robotic problems like robot motion, localization, and mapping, while the second strategy opts for using the ROS framework for the development of algorithms facing a competitive challenge, e.g. exploration algorithms. The obtained students’ opinions were instructive, reporting, for example, that although they consider harder to master ROS when compared to Matlab, it might be more useful in their (robotic related) professional careers, which enhanced their disposition to study it. They also considered that the challenge-exercises, in addition to motivate them, helped to develop their skills as engineers to a greater extent than the skeleton-code based ones. These and other conclusions will be useful in posterior courses to boost the interest and motivation of the students.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Using Project Based Learning to Engage Third -Fifth Grade Students in Robotics Education

    Get PDF
    Includes bibliographical references (pages 36-40)The purpose of this graduate project was to examine the engagement of third through fifth grade students using Lego?? robotics as the catalyst in project based learning. Robotics educations has been on the rise in the last 10 years, but in the elementary schools it has been the driving force for many teachers on how to engage students in todays??? technological advances. Using project based learning and Lego?? robotics creates an engaging environment for students and teachers to cover Common Core States Standards along with the Next Generation Science Standards. This project was created to help guide teachers, administrators and after school counselors with the materials and resources needed in order to start a robotics program at their own location

    Open-Source Drone Programming Course for Distance Engineering Education.

    Get PDF
    This article presents a full course for autonomous aerial robotics inside the RoboticsAcademy framework. This “drone programming” course is open-access and ready-to-use for any teacher/student to teach/learn drone programming with it for free. The students may program diverse drones on their computers without a physical presence in this course. Unmanned aerial vehicles (UAV) applications are essentially practical, as their intelligence resides in the software part. Therefore, the proposed course emphasizes drone programming through practical learning. It comprises a collection of exercises resembling drone applications in real life, such as following a road, visual landing, and people search and rescue, including their corresponding background theory. The course has been successfully taught for five years to students from several university engineering degrees. Some exercises from the course have also been validated in three aerial robotics competitions, including an international one. RoboticsAcademy is also briefly presented in the paper. It is an open framework for distance robotics learning in engineering degrees. It has been designed as a practical complement to the typical online videos of massive open online courses (MOOCs). Its educational contents are built upon robot operating system (ROS) middleware (de facto standard in robot programming), the powerful 3D Gazebo simulator, and the widely used Python programming language. Additionally, RoboticsAcademy is a suitable tool for gamified learning and online robotics competitions, as it includes several competitive exercises and automatic assessment toolspost-print5214 K
    • 

    corecore