954 research outputs found

    Development Of Test Platform Of Fpga Interconnect To Capture Marginal Open Defect

    Get PDF
    This research highlights the development of test platform of FPGA interconnect to capture marginal open defect on Altera® Stratix V devices. The need for at-speed test was due to the increasing number of marginal open defects, resulting from manufacturing process complexity anticipated from continuously shrinking transistors towards nanometer (nm) scale. The defect was unable to be captured by current stuck-at test and this research utilized the Launch on Shift (LOS) transition delay method to detect the marginal open defects. Towards the final implementation, there are few unique design implemented in order to generate the at-speed clocks and the pipelined scan enable signals to support LOS method. Meanwhile, the ability to test the interconnect on at-speed frequency required new routing tool control variables to limit the interconnect path lengths and device power consumption. The control variables are discussed further in this research. The LOS test patterns used in this research managed to cover up to 81% of the overall routing resources for marginal open defect effectively. Furthermore, the test was successfully implemented at frequencies up to 400 MHz and proven to be sensitive to routing delay to capture marginal open defects. The ability to capture the defect with only 0.56 kΩ resistance is better than the initial 3 kΩ target in this research. It is also better than other literatures which targeted between 6 kΩ to 10 kΩ only

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    A global wire planning scheme for Network-on-Chip.

    Get PDF
    As technology scales down, the interconnect for on-chip global communication becomes the delay bottleneck. In order to provide well-controlled global wire delay and efficient global communication, a packet switched Network-on-Chip (NoC) architecture was proposed by different authors. In this paper, the NoC system parameters constrained by the interconnections are studied. Predictions on scaled system parameters such as clock frequency, resource size, global communication bandwidth and inter-resource delay are made for future technologies. Based on these parameters, a global wire planning scheme is proposed

    A Monitoring Infrastructure for FPGA Self-Awareness and Dynamic Adaptation

    Full text link
    Variabilities associated with CMOS evolution affect the yield and performance of current digital designs. FPGAs, which are widely used for fast prototyping and implementation of digital circuits, also suffer from these issues. Proactive approaches start to appear to achieve self-awareness and dynamic adaptation of these devices. To support these techniques we propose the employment of a multi-purpose sensor network. This infrastructure, through adequate use of configuration and automation tools, is able to obtain relevant data along the life cycle of an FPGA. This is realised at a very reduced cost, not only in terms of area or other limited resources, but also regarding the design effort required to define and deploy the measuring infrastructure. Our proposal has been validated by measuring inter-die and intra-die variability in different FPGA families

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    A software controlled voltage tuning system using multi-purpose ring oscillators

    Full text link
    This paper presents a novel software driven voltage tuning method that utilises multi-purpose Ring Oscillators (ROs) to provide process variation and environment sensitive energy reductions. The proposed technique enables voltage tuning based on the observed frequency of the ROs, taken as a representation of the device speed and used to estimate a safe minimum operating voltage at a given core frequency. A conservative linear relationship between RO frequency and silicon speed is used to approximate the critical path of the processor. Using a multi-purpose RO not specifically implemented for critical path characterisation is a unique approach to voltage tuning. The parameters governing the relationship between RO and silicon speed are obtained through the testing of a sample of processors from different wafer regions. These parameters can then be used on all devices of that model. The tuning method and software control framework is demonstrated on a sample of XMOS XS1-U8A-64 embedded microprocessors, yielding a dynamic power saving of up to 25% with no performance reduction and no negative impact on the real-time constraints of the embedded software running on the processor

    Power Efficient Frequency Scaled and ThermalAware Control Unit Design on FPGA

    Get PDF
    corecore