213 research outputs found

    Modified digital space vector pulse width modulation realization on low-cost FPGA platform with optimization for 3-phase voltage source inverter

    Get PDF
    The realization of power electronic applications on hardware is a challenging task. The digital control circuit strategies are used to overcome the analog control strategies by providing great flexibility with simple equipment and higher switching frequencies. In this manuscript, an area optimized, modified digital space vector (DSV) pulse width modulation is designed and realized on low-cost FPGA. The modified digital space vector pulse width modulation (DSVPWM) uses a phase-locked loop (PLL) to generate clocks using the digital clock manager (DCM). These DCM clocks are used in the DSVPWM module to synchronize the other sub-modules. The voltage generation unit generates the three-phase (3-Ф) voltages and is used in the alpha-beta generation and sector determination unit. The reference active vectors are made by the reference generation unit and used in switching time calculation. The PWM pulses are generated using switching time generation, and lastly, the dead time occurrence unit generates the final SVPWM gate pulses. The modified DSVPWM is synthesized and implemented on Spartan-3E FPGA. The modified DSVPWM utilizes 17% slices, works at 102.45 MHz, and consumes 0.070 W total power. The simulation results and the resource utilization of modified DSVPWM are represented in detail. The modified DSVPWM is compared with existing PWM approaches on different Spartan-series FPGAs with better chip area improvemen

    A Simple Approach of Space-vector Pulse Width Modulation Realization Based on Field Programmable Gate Array

    Get PDF
    Employing a field programmable gate array to realize space-vector pulse width modulation is a solution to boost system performance. Although there is much literature in the application of three-phase space-vector pulse width modulation based on field programmable gate arrays, most is on conventional space-vector pulse width modulation with designs that are complicated. This article will present a simple approach to realize five-segment discontinuous space-vector pulse width modulation based on a field programmable gate array, in which the judging of sectors and the calculation of the firing time are simpler with fewer switching losses. The proposed space-vector pulse width modulation has been successfully designed and implemented to drive on a three-phase inverter system that is loaded by an induction machine of 1.5 kW using the APEX20KE Altera field programmable gate array (Altera Corporation, San Jose, California, USA)

    High Performance FPGA Based Digital Space Vector PWM Three Phase Voltage Source Inverter

    Full text link

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Control in multi-motor electric vehicle with a FPGA platform

    Get PDF
    A new FPGA based platform is presented for controlling a Multi-Motor Electric Vehicle (EV). By exploring the FPGA parallel processing capabilities, two induction motor controllers, based on Field Orientation Control and Space Vector Modulation techniques, were merged in a single and compact chip. Implementation issues related with the limited number of dedicated multipliers were overcome using an efficient computational block, based on resource sharing strategy. The developed IP Cores were carefully optimized to fit in a low cost XC3S1000. Experimental results, obtained with a multi-motor EV prototype, demonstrate the proper operation of the proposed propulsion system

    Controller Platform Design and Demonstration for an Electric Aircraft Propulsion Driv

    Get PDF
    With the growth in the aerospace industry there has been a trend to optimize the performance of an aircraft by reducing fuel consumption and operational cost. Recent advancements in the field of power electronics have pushed towards the concepts of hybrid electric aircraft also known as more electrical aircrafts. In this work, a custom controller board for an electric aircraft propulsion drive was designed to drive a permanent magnet synchronous motor. Design of the controller board required knowledge of the topology selection and power module selections. Simulations of the system were performed using MATLAB/Simulink to analyze the overall performance of the selected topology. Implementation of the control algorithm was tested on the hardware prototype of a three-phase, two-level voltage source inverter. Complete testing of the system at high power was accomplished; thus, demonstrating the inverter’s ability to operate at the desired power level

    Simple Realization of 5-Segment Discontinuous SVPWM Based on FPGA

    Get PDF
    The Space Vector Pulse Width Modulation (SVPWM) is possibly the best among all the PWM techniques for variable frequency drive applications. Unfortunately, the modulation algorithm is mainly implemented with software based on microcontroller or digital signal processors (DSP). These are software-based technique purely and obviously not an ideal solution. Employing Field Programmable Gate Array (FPGA) to realize SVPWM strategies provides advantages that it is considered as an appropriate solution to boost system performance of an SVPWM algorithm. Moreover, although in the literatures the implementation for three-phase SVPWM based on FPGA is not lacking, however all these designs are based on the conventional SVPWM without considering hardware-resource saving and not simple. This paper present a simple realization of 5-segment discontinuous SVPWM with a difference approach based on FPGA, in which the judging of sectors and the calculation of the firing time to generate the SVPWM waveform is simple, and also the switching losses is low. The proposed discontinuous SVPWM has been designed and successfully implemented by using APEX20KE Altera FPGA considering hardware-resource saving and has successfully driven a three phase inverter system with induction machine 1.5 kW as load
    • …
    corecore