372 research outputs found

    Meta-pipeline: A new execution mechanism for distributed pipeline processing

    Get PDF
    The Caravela platform has been proposed by the authors of this paper to perform distributed stream-based computing on general purpose computation. This platform uses a secured execution unit called flow-model that prevents remote users to touch local information in a computer. The flow-model is assigned to local or remote processing units that execute its program. This paper is focused on a new execution mechanism that defines a pipeline composed by flow-models, called meta-pipeline, and is designed as a set of additional functions of the Caravela platform. The pipeline is executed automatically by the meta-pipeline runtime environment. This paper describes the execution mechanism and also presents an application example.info:eu-repo/semantics/acceptedVersio

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    High-level programming for heterogeneous and hierarchical parallel systems

    Get PDF
    High-Level Heterogeneous and Hierarchical Parallel Systems (HLPGPU) aims to bring together researchers and practitioners to present new results and ongoing work on those aspects of high-level programming relevant, or specific to general-purpose computing on graphics processing units (GPGPUs) and new architectures. The 2016 HLPGPU symposium was an event co-located with the HiPEAC conference in Prague, Czech Republic. HLPGPU is targeted at high-level parallel techniques, including programming models, libraries and languages, algorithmic skeletons, refactoring tools and techniques for parallel patterns, tools and systems to aid parallel programming, heterogeneous computing, timing analysis and statistical performance models.PostprintPeer reviewe

    Radio-Astronomical Imaging on Accelerators

    Get PDF
    Imaging is considered the most compute-intensive and therefore most challenging part of a radio-astronomical data-processing pipeline. To reach the high dynamic ranges imposed by the high sensitivity and large field of view of the new generation of radio telescopes such as the Square Kilometre Array (SKA), we need to be able to correct for direction-independent effects (DIEs) such as the curvature of the earth as well as for direction-dependent time-varying effects (DDEs) such as those caused by the ionosphere during imaging. The novel Image-Domain gridding (IDG) algorithm was designed to avoid the performance bottlenecks of traditional imaging algorithms. We implement, optimize, and analyze the performance and energy efficiency of IDG on a variety of hardware platforms to find which platform is the best for IDG. We analyze traditional CPUs, as well as several accelerators architectures. IDG alleviates the limitations of traditional imaging algorithms while it enables the advantages of GPU acceleration: better performance at lower power consumption. The hardware-software co-design has resulted in a highly efficient imager. This makes IDG on GPUs an ideal candidate for meeting the computational and energy efficiency constraints of the SKA. IDG has been integrated with a widely-used astronomical imager (WSClean) and is now being used in production by a variety of different radio observatories such as LOFAR and the MWA. It is not only faster and more energy-efficient than its competitors, but it also produces better quality images

    Simple and efficient GPU parallelization of existing H-Matrix accelerated BEM code

    Get PDF
    In this paper, we demonstrate how GPU-accelerated BEM routines can be used in a simple black-box fashion to accelerate fast boundary element formulations based on Hierarchical Matrices (H-Matrices) with ACA (Adaptive Cross Approximation). In particular, we focus on the expensive evaluation of the discrete weak form of boundary operators associated with the Laplace and the Helmholtz equation in three space dimensions. The method is based on offloading the CPU assembly of elements during the ACA assembly onto a GPU device and to use threading strategies across ACA blocks to create sufficient workload for the GPU. The proposed GPU strategy is designed such that it can be implemented in existing code with minimal changes to the surrounding application structure. This is in particular interesting for existing legacy code that is not from the ground-up designed with GPU computing in mind. Our benchmark study gives realistic impressions of the benefits of GPU-accelerated BEM simulations by using state-of-the-art multi-threaded computations on modern high-performance CPUs as a reference, rather than drawing synthetic comparisons with single-threaded codes. Speed-up plots illustrate that performance gains up to a factor of 5.5 could be realized with GPU computing under these conditions. This refers to a boundary element model with about 4 million unknowns, whose H-Matrix weak form associated with a real-valued (Laplace) boundary operator is set up in only 100 minutes harnessing the two GPUs instead of 9 hours when using the 20 CPU cores at disposal only. The benchmark study is followed by a particularly demanding real-life application, where we compute the scattered high-frequency sound field of a submarine to demonstrate the increase in overall application performance from moving to a GPU-based ACA assembly

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Performance-Aware High-Performance Computing for Remote Sensing Big Data Analytics

    Get PDF
    The incredible increase in the volume of data emerging along with recent technological developments has made the analysis processes which use traditional approaches more difficult for many organizations. Especially applications involving subjects that require timely processing and big data such as satellite imagery, sensor data, bank operations, web servers, and social networks require efficient mechanisms for collecting, storing, processing, and analyzing these data. At this point, big data analytics, which contains data mining, machine learning, statistics, and similar techniques, comes to the help of organizations for end-to-end managing of the data. In this chapter, we introduce a novel high-performance computing system on the geo-distributed private cloud for remote sensing applications, which takes advantages of network topology, exploits utilization and workloads of CPU, storage, and memory resources in a distributed fashion, and optimizes resource allocation for realizing big data analytics efficiently

    Sparse matrix-vector multiplication on GPGPUs

    Get PDF
    The multiplication of a sparse matrix by a dense vector (SpMV) is a centerpiece of scientific computing applications: it is the essential kernel for the solution of sparse linear systems and sparse eigenvalue problems by iterative methods. The efficient implementation of the sparse matrix-vector multiplication is therefore crucial and has been the subject of an immense amount of research, with interest renewed with every major new trend in high performance computing architectures. The introduction of General Purpose Graphics Processing Units (GPGPUs) is no exception, and many articles have been devoted to this problem. With this paper we provide a review of the techniques for implementing the SpMV kernel on GPGPUs that have appeared in the literature of the last few years. We discuss the issues and trade-offs that have been encountered by the various researchers, and a list of solutions, organized in categories according to common features. We also provide a performance comparison across different GPGPU models and on a set of test matrices coming from various application domains

    Multi-GPU support on the marrow algorithmic skeleton framework

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWith the proliferation of general purpose GPUs, workload parallelization and datatransfer optimization became an increasing concern. The natural evolution from using a single GPU, is multiplying the amount of available processors, presenting new challenges, as tuning the workload decompositions and load balancing, when dealing with heterogeneous systems. Higher-level programming is a very important asset in a multi-GPU environment, due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA), because of their low-level and code overhead. This can be obtained by introducing an abstraction layer, which has the advantage of enabling implicit optimizations and orchestrations such as transparent load balancing mechanism and reduced explicit code overhead. Algorithmic Skeletons, previously used in cluster environments, have recently been adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by defining computation patterns of commonly used algorithms. The Marrow algorithmic skeleton library is one of these, taking advantage of the abstractions to automate the orchestration needed for an efficient GPU execution. This thesis proposes the extension of Marrow to leverage the use of algorithmic skeletons in the modular and efficient programming of multiple heterogeneous GPUs, within a single machine. We were able to achieve a good balance between simplicity of the programming model and performance, obtaining good scalability when using multiple GPUs, with an efficient load distribution, although at the price of some overhead when using a single-GPU.projects PTDC/EIA-EIA/102579/2008 and PTDC/EIA-EIA/111518/200

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress
    • …
    corecore