1,033 research outputs found

    VHDL-AMS based genetic optimisation of fuzzy logic controllers

    No full text
    Purpose – This paper presents a VHDL-AMS based genetic optimisation methodology for fuzzy logic controllers (FLCs) used in complex automotive systems and modelled in mixed physical domains. A case study applying this novel method to an active suspension system has been investigated to obtain a new type of fuzzy logic membership function with irregular shapes optimised for best performance. Design/methodology/approach – The geometrical shapes of the fuzzy logic membership functions are irregular and optimised using a genetic algorithm (GA). In this optimisation technique, VHDL-AMS is used not only for the modelling and simulation of the FLC and its underlying active suspension system but also for the implementation of a parallel GA directly in the system testbench. Findings – Simulation results show that the proposed FLC has superior performance in all test cases to that of existing FLCs that use regular-shape, triangular or trapezoidal membership functions. Research limitations – The test of the FLC has only been done in the simulation stage, no physical prototype has been made. Originality/value – This paper proposes a novel way of improving the FLC’s performance and a new application area for VHDL-AMS

    Optimal control design for robust fuzzy friction compensation in a robot joint

    Get PDF
    This paper presents a methodology for the compensation of nonlinear friction in a robot joint structure based on a fuzzy local modeling technique. To enhance the tracking performance of the robot joint, a dynamic model is derived from the local physical properties of friction. The model is the basis of a precompensator taking into account the dynamics of the overall corrected system by means of a minor loop. The proposed structure does not claim to faithfully reproduce complex phenomena driven by friction. However, the linearity of the local models simplifies the design and implementation of the observer, and its estimation capabilities are improved by the nonlinear integral gain. The controller can then be robustly synthesized using linear matrix inequalities to cancel the effects of inexact friction compensation. Experimental tests conducted on a robot joint with a high level of friction demonstrate the effectiveness of the proposed fuzzy observer-based control strategy for tracking system trajectories when operating in zero-velocity regions and during motion reversals

    Evolvable Hardware Based Optimal Position Control of Quadcopter

    Get PDF
    Trading off performance metrics in control design for position tracking is unavoidable. This has severe consequences in mission-critical systems such as quadcopter applications. The controller area and propulsion energy are conflicting design parameters, whereas the reliability and tracking speed are related metrics to be optimized. In this research, a switching-based position controller was co-simulated with the quadcopter model. Performance analysis of the Field Programmable Gate Array (FPGA)-based controller validates a better scheme for tracking speed, propulsion energy, and reliability optimization under similar error performance. To improve the computation power and controller area, the dynamic partial reconfiguration(DPR) approach has been adapted and implemented on FPGA using the Vivado Integrated Development Environment (IDE), where a ranking-based approach brings into action either proportional derivative, sliding mode, or model predictive controllers for each dimension of position tracking. It is verified by analyzing the cumulative tracking speed, reliability, controller area, and propulsion energy metrics that the proposed controller can optimize all these metrics within three successive iterations of tracking either in the same direction or in any combination of directions. Concerning the implementation results of the controller with the switching-based controller, there is 6 % computation power and 30 % resource savings due to DPR

    Study of Motion Control of A Flexible Link

    Get PDF
    20th century has witnessed massive upsurge in the use of manipulators in several industries especially in space, defense, and medical industries. Among the types of manipulators used, single link manipulators are the most widely used. A single link robotic manipulator is nothing but a link controlled by an actuator to carry out a particular function such as placing a payload from point A to point B. For low power requirements single link manipulators are made up of light weight materials which require flexibility considerations.Flexibility makes the dynamics of the link heavily non-linear which induces vibrations and overshoot. In this project initially the dynamic model of rigid flexible manipulator is explained, then the state space model of the manipulator system is incorporated into MATLAB. The link flexibility is studied by a single beam FEmodel, where expressions for kinetic and potential energyare employed to derive the torqueequation.The 3 flexible link equations are coupled in terms of 3 variables, θ, Ø and v. The tip angle is finally given aslvfor flexible case whereas for the rigid manipulator the tip angle is same as the hub angle θ. Thereforeaccurate computation of v is very important. The joint flexibility is excluded from analysis.Several comparisons were made between the rigid and flexible link for torque requirement. The relation between the trajectory and hub angle is also plotted in a graph.Finally a PD controller taking the errors and its derivative is designed based on the rigid link dynamics

    Design and Implementation of a Fuzzy Logic Speed Controller for an Internal Combustion Engine

    Get PDF
    Internal combustion engines are challenging to model and control. Uncertainties and nonlinearities pose operating problems for classical controllers. Delays inherent to the engine combustion cycle tend to introduce overshoot and oscillations in most control schemes. Most work that has been done in dealing with delays requires the designer to have extensive knowledge of the system to be controlled. Engines are very difficult to model accurately, thereby ruling out most of these techniques. Fuzzy logic is well suited to this problem, since an accurate model is not needed for design, and it is known to be robust to nonlinearities and parameter variations. The objective of this thesis was to design and implement a fuzzy logic controller to control the speed of a Honda EM3500S portable generator. This new fuzzy controller maintains the robustness of traditional fuzzy logic to nonlinearities and it is also more robust to delays. The control scheme uses dual fuzzy logic control modules in parallel. One of the modules is a traditional fuzzy scheme and the other is a simple two membership fuzzy scheme tuned to reduce oscillations. For optimal performance this second module requires dynamic adjustment of parameters such as input and output gains in response to the system’s current operating condition. The result is a control scheme that offers reduced overshoot and oscillations. The new control scheme was compared to the classical PID and the traditional fuzzy logic controllers. These comparisons were done via computer simulations and laboratory implementation and testing. A windows based C++ program was developed to realize and test the new controller. The better performance of the new control scheme was illustrated

    A Fuzzy Logic Controller for Autonomous Wheeled Vehicles

    Get PDF
    Autonomous vehicles have potential applications in many fields, such as replacing humans in hazardous environments, conducting military missions, and performing routine tasks for industry. Driving ground vehicles is an area where human performance has proven to be reliable. Drivers typically respond quickly to sudden changes in their environment. While other control techniques may be used to control a vehicle, fuzzy logic has certain advantages in this area; one of them is its ability to incorporate human knowledge and experience, via language, into relationships among the given quantities. Fuzzy logic controllers for autonomous vehicles have been successfully applied to address various (and sometimes simultaneous) navigational issues

    Earmuffs

    Get PDF
    Earmuffs are objects designed to cover a person's ears for hearing protection when doing the harsh work field or for warmth on the cool environment . They consist of a thermoplastic or metal head-band, that fits over the top or back of the head, and a cushion or cup at each end, to cover the external ears
    corecore