2,519 research outputs found

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Feedback-error learning for gait rehabilitation using a powered knee orthosis: first advances

    Get PDF
    Powered assistive devices have been playing a major role in gait rehabilitation. Hereby, the development of time-effective control strategies to manage such devices is a key concern to rehabilitation engineering. This paper presents a real-time Feedback-Error Learning control strategy, by means of an Artificial Neural Network as a feedforward controller to acquire the inverse model of the plant, and a Proportional-Integral-Derivative feedback controller to guarantee stability and handle with disturbances. A Powered Knee Orthosis was used as the assistive device and a trajectory generator assistive strategy, previously acquired through an inertial system, was applied. A validation with one subject walking in a treadmill at 1 km/h with the Powered Knee Orthosis controlled by the Feedback-Error Learning control was performed. Evidences on the control behavior presented good performances, with the Artificial Neural Network taking 90 seconds to learn the inverse model, which enabled a decrease in the angular position error by 75% and eliminated the phase delay, when compared to solo Proportional-Integral-Derivative feedback controller. Robust reactions to external disturbances were also achieved. The implemented Feedback-Error Learning strategy proves to be a time-effective asset to control assistive powered devices.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, and part by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs -Controlo Inteligente de um Sistema Ortotico Ativo e Autonomo-under Grant NORTE-01-0145-FEDER-030386, and by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941 and supported by grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness

    Development of Speech Command Control Based TinyML System for Post-Stroke Dysarthria Therapy Device

    Get PDF
    Post-stroke dysarthria (PSD) is a widespread outcome of a stroke. To help in the objective evaluation of dysarthria, the development of pathological voice recognition and technology has a lot of attention. Soft robotics therapy devices have been received as an alternative rehabilitation and hand grasp assistance for improving activity daily living (ADL). Despite the significant progress in this field, most soft robotic therapy devices use a complex, bulky, lack of pathological voice recognition model, large computational power, and stationary controller. This study aims to develop a portable wirelessly multi-controller with a simulated dysarthric vowel speech in Bahasa Indonesia and non-dysarthric micro speech recognition, using tiny machine learning (TinyMl) system for hardware efficiency. The speech interface using INMP441, compute with a lightweight Deep Convolutional Neural network (DCNN) design and embedded into ESP-32. Feature model using Short Time Fourier Transform (STFT) and fed into CNN. This method has proven useful in micro-speech recognition with low computational power in both speech scenarios with a level of accuracy above 90%. Realtime inference performance on ESP-32 using hand prosthetics, with 3-level household noise intensity respectively 24db,42db, and 62db, and has respectively resulted from 95%, 85%, and 50% Accuracy. Wireless connectivity success rate with both controllers is around 0.2 - 0.5 ms

    Functional Rehabilitation: Coordination of Artificial and Natural Controllers

    Get PDF
    International audienceWalking and standing abilities, though important for quality of life and participation in social and economic activities, can be adversely affected by central nervous system (CNS) disorders such as spinal cord injury, stroke or traumatic brain injury. One characteristic of motor deficiencies which affect lower extremities is their impact on both static and dynamic postural equilibrium. Depending on the impairment level, functional rehabilitation techniques may be needed for a patient to stand up and walk (Popovic and Sinkjær, 2003). Functional electrical stimulation (FES) can induce contraction of skeletal muscles by applying electrical stimuli to sensory-motor system via electrodes which can be placed on the skin (Kralj et al., 1983), or implanted (Guiraud et al., 2006). FES applications applied to lower limbs include foot drop correction, single joint control, cycling, standing up, walking... (Zhang and Zhu, 2007)..

    Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation.

    Get PDF
    Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOE The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s

    Semi-autonomous robotic wheelchair controlled with low throughput human- machine interfaces

    Get PDF
    For a wide range of people with limited upper- and lower-body mobility, interaction with robots remains a challenging problem. Due to various health conditions, they are often unable to use standard joystick interface, most of wheelchairs are equipped with. To accommodate this audience, a number of alternative human-machine interfaces have been designed, such as single switch, sip-and-puff, brain-computer interfaces. They are known as low throughput interfaces referring to the amount of information that an operator can pass into the machine. Using them to control a wheelchair poses a number of challenges. This thesis makes several contributions towards the design of robotic wheelchairs controlled via low throughput human-machine interfaces: (1) To improve wheelchair motion control, an adaptive controller with online parameter estimation is developed for a differentially driven wheelchair. (2) Steering control scheme is designed that provides a unified framework integrating different types of low throughput human-machine interfaces with an obstacle avoidance mechanism. (3) A novel approach to the design of control systems with low throughput human-machine interfaces has been proposed. Based on the approach, position control scheme for a holonomic robot that aims to probabilistically minimize time to destination is developed and tested in simulation. The scheme is adopted for a real differentially driven wheelchair. In contrast to other methods, the proposed scheme allows to use prior information about the user habits, but does not restrict navigation to a set of pre-defined points, and parallelizes the inference and motion reducing the navigation time. (4) To enable the real time operation of the position control, a high-performance algorithm for single-source any-angle path planning on a grid has been developed. By abandoning the graph model and introducing discrete geometric primitives to represent the propagating wave front, we were able to design a planning algorithm that uses only integer addition and bit shifting. Experiments revealed a significant performance advantage. Several modifications, including optimal and multithreaded implementations, are also presented

    Gesteme-free context-aware adaptation of robot behavior in human–robot cooperation

    Get PDF
    Background: Cooperative robotics is receiving greater acceptance because the typical advantages provided by manipulators are combined with an intuitive usage. In particular, hands-on robotics may benefit from the adaptation of the assistant behavior with respect to the activity currently performed by the user. A fast and reliable classification of human activities is required, as well as strategies to smoothly modify the control of the manipulator. In this scenario, gesteme-based motion classification is inadequate because it needs the observation of a wide signal percentage and the definition of a rich vocabulary. Objective: In this work, a system able to recognize the user's current activity without a vocabulary of gestemes, and to accordingly adapt the manipulator's dynamic behavior is presented. Methods and material: An underlying stochastic model fits variations in the user's guidance forces and the resulting trajectories of the manipulator's end-effector with a set of Gaussian distribution. The high-level switching between these distributions is captured with hidden Markov models. The dynamic of the KUKA light-weight robot, a torque-controlled manipulator, is modified with respect to the classified activity using sigmoidal-shaped functions. The presented system is validated over a pool of 12 naive users in a scenario that addresses surgical targeting tasks on soft tissue. The robot's assistance is adapted in order to obtain a stiff behavior during activities that require critical accuracy constraint, and higher compliance during wide movements. Both the ability to provide the correct classification at each moment (sample accuracy) and the capability of correctly identify the correct sequence of activity (sequence accuracy) were evaluated. Results: The proposed classifier is fast and accurate in all the experiments conducted (80% sample accuracy after the observation of similar to 450 ms of signal). Moreover, the ability of recognize the correct sequence of activities, without unwanted transitions is guaranteed (sequence accuracy similar to 90% when computed far away from user desired transitions). Finally, the proposed activity-based adaptation of the robot's dynamic does not lead to a not smooth behavior (high smoothness, i.e. normalized jerk score <0.01). Conclusion: The provided system is able to dynamic assist the operator during cooperation in the presented scenario
    corecore