2,273 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Compliance checking of cloud providers: design and implementation

    Get PDF
    The recognition of capabilities supplied by cloud systems is presently growing up. Collecting or sharing healthcare data and sensitive information especially during Covid-19 pandemic has motivated organizations and enterprises to leverage the upsides coming from cloud-based applications. However, the privacy of electronic data in such applications remains a significant challenge for cloud vendors to adapt their solutions with existing privacy legislation standards such as general data protection regulation (GDPR). This paper, first, proposes a formal model and verification for data usage requests of providers in a cloud composite service using a model checking tool. A cloud pharmacy scenario is presented to illustrate the connectivity of providers in the composite service and the stream of their requests for both collection and movement of patient data. A set of verification is, then, undertaken over the pharmacy service in accordance with three significant GDPR obligations, namely user consent, data access and data transfer. Following that, the paper designs and implements a cloud container virtualization based on the verified formal model realising GDPR requirements. The container makes use of some enforcement smart contracts to only proceed the providers’ requests, which are compliant with GDPR. Finally, several experiments are provided to investigate the performance of our approach in terms of time, memory and cost

    Digital Forensics Investigation Frameworks for Cloud Computing and Internet of Things

    Get PDF
    Rapid growth in Cloud computing and Internet of Things (IoT) introduces new vulnerabilities that can be exploited to mount cyber-attacks. Digital forensics investigation is commonly used to find the culprit and help expose the vulnerabilities. Traditional digital forensics tools and methods are unsuitable for use in these technologies. Therefore, new digital forensics investigation frameworks and methodologies are required. This research develops frameworks and methods for digital forensics investigations in cloud and IoT platforms

    Holding on to Compliance While Adopting DevSecOps: An SLR

    Get PDF
    The software industry has witnessed a growing interest in DevSecOps due to the premises of integrating security in the software development lifecycle. However, security compliance cannot be disregarded, given the importance of adherence to regulations, laws, industry standards, and frameworks. This study aims to provide an overview of compliance aspects in the context of DevSecOps and explore how compliance is ensured. Furthermore, this study reveals the trends of compliance according to the extant literature and identifies potential directions for further research in this context. Therefore, we carried out a systematic literature review on the integration of compliance aspects in DevSecOps, which rigorously followed the guidelines proposed by Kitchenham and Charters. We found 934 articles related to the topic by searching five bibliographic databases (163) and Google Scholar (771). Through a rigorous selection process, we selected 15 papers as primary studies. Then, we identified the compliance aspects of DevSecOps and grouped them into three main categories: compliance initiation, compliance management, and compliance technicalities. We observed a low number of studies; therefore, we encourage further efforts into the exploration of compliance aspects, their automated integration, and the development of metrics to evaluate such a process in the context of DevSecOps.publishedVersio

    EMI Security Architecture

    Get PDF
    This document describes the various architectures of the three middlewares that comprise the EMI software stack. It also outlines the common efforts in the security area that allow interoperability between these middlewares. The assessment of the EMI Security presented in this document was performed internally by members of the Security Area of the EMI project
    corecore