875 research outputs found

    Soft Fiber-Reinforced Pneumatic Actuator Design and Fabrication: Towards Robust, Soft Robotic Systems

    Get PDF
    © Springer Nature Switzerland AG 2019. Soft robotics is a rapidly evolving, young research area. So far there are no well-established design standards nor fabrication procedures for soft robots. A number of research groups are working on soft robotics solutions independently and we can observe a range of designs realized in different ways. These soft robots are based on various actuation principles, are driven with various actuation media, and offer various actuation properties. Still, most of them require lots of manual effort and high manual fabrication skills from the person manufacturing these kinds of robots. A significant share of the proposed designs suffers from some imperfections that could be improved by simple design changes. In this work, we propose a number of design and fabrication rules for improving the performance and fabrication complexity of soft fiber-reinforced pneumatic actuators. The proposed design approach focuses on a circular geometry for the pressure chambers and applying a dense, fiber-based reinforcement. Such an approach allows for a more linear actuator response and reduced wear of the actuators, when compared to previous approaches. The proposed manufacturing procedure introduces the application of the reinforcement before the fabrication of the actuator body, significantly reducing the required fabrication effort and providing more consistent and more reliable results

    Soft Pneumatic Gelatin Actuator for Edible Robotics

    Get PDF
    We present a fully edible pneumatic actuator based on gelatin-glycerol composite. The actuator is monolithic, fabricated via a molding process, and measures 90 mm in length, 20 mm in width, and 17 mm in thickness. Thanks to the composite mechanical characteristics similar to those of silicone elastomers, the actuator exhibits a bending angle of 170.3 {\deg} and a blocked force of 0.34 N at the applied pressure of 25 kPa. These values are comparable to elastomer based pneumatic actuators. As a validation example, two actuators are integrated to form a gripper capable of handling various objects, highlighting the high performance and applicability of the edible actuator. These edible actuators, combined with other recent edible materials and electronics, could lay the foundation for a new type of edible robots.Comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 201

    Computational Modeling and Experimental Characterization of Pneumatically Driven Actuators for the Development of a Soft Robotic Arm

    Get PDF
    abstract: Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Compliant Electric Actuators Based on Handed Shearing Auxetics

    Get PDF
    In this paper, we explore a new class of electric motor-driven compliant actuators based on handed shearing auxetic cylinders. This technique combines the benefits of compliant bodies from soft robotic actuators with the simplicity of direct coupling to electric motors. We demonstrate the effectiveness of this technique by creating linear actuators, a four degree-of-freedom robotic platform, and a soft robotic gripper. We compare the soft robotic gripper against a state of the art pneumatic soft gripper, finding similar grasping performance in a significantly smaller and more energy-efficient package.Boeing CompanyNational Science Foundation (U.S.) (grant numbers NSF IIS- 1226883)National Science Foundation (U.S.) (grant numbers NSF CCF-1138967

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves
    corecore