124 research outputs found

    Torque Saturation in Bipedal Robotic Walking through Control Lyapunov Function Based Quadratic Programs

    Get PDF
    This paper presents a novel method for directly incorporating user-defined control input saturations into the calculation of a control Lyapunov function (CLF)-based walking controller for a biped robot. Previous work by the authors has demonstrated the effectiveness of CLF controllers for stabilizing periodic gaits for biped walkers, and the current work expands on those results by providing a more effective means for handling control saturations. The new approach, based on a convex optimization routine running at a 1 kHz control update rate, is useful not only for handling torque saturations but also for incorporating a whole family of user-defined constraints into the online computation of a CLF controller. The paper concludes with an experimental implementation of the main results on the bipedal robot MABEL

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Systematic Controller Design for Dynamic 3D Bipedal Robot Walking.

    Full text link
    Virtual constraints and hybrid zero dynamics (HZD) have emerged as a powerful framework for controlling bipedal robot locomotion, as evidenced by the robust, energetically efficient, and natural-looking walking and running gaits achieved by planar robots such as Rabbit, ERNIE, and MABEL. However, the extension to 3D robots is more subtle, as the choice of virtual constraints has a deciding effect on the stability of a periodic orbit. Furthermore, previous methods did not provide a systematic means of designing virtual constraints to ensure stability. This thesis makes both experimental and theoretical contributions to the control of underactuated 3D bipedal robots. On the experimental side, we present the first realization of dynamic 3D walking using virtual constraints. The experimental success is achieved by augmenting a robust planar walking gait with a novel virtual constraint for the lateral swing hip angle. The resulting controller is tested in the laboratory on a human-scale bipedal robot (MARLO) and demonstrated to stabilize the lateral motion for unassisted 3D walking at approximately 1 m/s. MARLO is one of only two known robots to walk in 3D with stilt-like feet. On the theoretical side, we introduce a method to systematically tune a given choice of virtual constraints in order to stabilize a periodic orbit of a hybrid system. We demonstrate the method to stabilize a walking gait for MARLO, and show that the optimized controller leads to improved lateral control compared to the nominal virtual constraints. We also describe several extensions of the basic method, allowing the use of a restricted Poincaré map and the incorporation of disturbance rejection metrics in the optimization. Together, these methods comprise an important contribution to the theory of HZD.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113370/1/bgbuss_1.pd

    Feedback Control of a Bipedal Walker and Runner with Compliance.

    Full text link
    This dissertation contributes to the theoretical foundations of robotic bipedal locomotion and advances the experimental state of the art as well. On the theoretical side, a mathematical formalism for designing provably stable, walking and running gaits in bipedal robots with compliance is presented. A key contribution is a novel method of force control in robots with compliance. The theoretical work is validated experimentally on MABEL, a planar bipedal testbed that contains springs in its drivetrain for the purpose of enhancing both energy efficiency and agility of dynamic locomotion. While the potential energetic benefits of springs are well documented in the literature, feedback control designs that effectively realize this potential are lacking. The methods of virtual constraints and hybrid zero dynamics, originally developed for rigid robots with a single degree of underactuation, are extended and applied to MABEL, which has a novel compliant transmission and multiple degrees of underactuation. A time-invariant feedback controller is designed such that the closed-loop system respects the natural compliance of the open-loop system and realizes exponentially stable walking gaits. A second time-invariant feedback controller is designed such that the closed-loop system not only respects the natural compliance of the open-loop system, but also enables active force control within the compliant hybrid zero dynamics and results in exponentially stable running gaits. Several experiments are presented that highlight different aspects of MABEL and the feedback design method, ranging from basic elements such as stable walking, robustness under perturbations, energy efficient walking to a bipedal robot walking speed record of 1.5 m/s (3.4 mph), stable running with passive feet and with point feet. On MABEL, the full hybrid zero dynamics controller is implemented and was instrumental in achieving rapid walking and running, leading upto a kneed bipedal running speed record of 3.06 m/s (6.8 mph).Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89801/1/koushils_1.pd

    Orbit Characterization, Stabilization and Composition on 3D Underactuated Bipedal Walking via Hybrid Passive Linear Inverted Pendulum Model

    Get PDF
    A Hybrid passive Linear Inverted Pendulum (H-LIP) model is proposed for characterizing, stabilizing and composing periodic orbits for 3D underactuated bipedal walking. Specifically, Period-l (P1) and Period -2 (P2) orbits are geometrically characterized in the state space of the H-LIP. Stepping controllers are designed for global stabilization of the orbits. Valid ranges of the gains and their optimality are derived. The optimal stepping controller is used to create and stabilize the walking of bipedal robots. An actuated Spring-loaded Inverted Pendulum (aSLIP) model and the underactuated robot Cassie are used for illustration. Both the aSLIP walking with PI or P2 orbits and the Cassie walking with all 3D compositions of the PI and P2 orbits can be smoothly generated and stabilized from a stepping-in-place motion. This approach provides a perspective and a methodology towards continuous gait generation and stabilization for 3D underactuated walking robots

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton
    • …
    corecore