5 research outputs found

    Survey on PMIPv6-based Mobility Management Architectures for Software-Defined Networking

    Get PDF
    Software-Defined Networking (SDN) has changed the network landscape. Meanwhile, IP-based mobility management still evolves, and SDN affects it dramatically. Integrating Proxy Mobile IPv6 (PMIPv6) – a network-based mobility management protocol – with the SDN paradigm has created several promising approaches. This paper will present an extensive survey on the joint research area of PMIPv6 and SDN mobility management by detailing the available SDN-integrated network-based techniques and architectures that intend to accelerate handover and mitigate service disruption of mobility events in softwareized telecommunication networks. The article also provides an overview of where PMIPv6 can be used and how SDN may help reach those ways

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Interoperabilidade e mobilidade na internet do futuro

    Get PDF
    Research on Future Internet has been gaining traction in recent years, with both evolutionary (e.g., Software Defined Networking (SDN)- based architectures) and clean-slate network architectures (e.g., Information Centric Networking (ICN) architectures) being proposed. With each network architectural proposal aiming to provide better solutions for specific Internet utilization requirements, an heterogeneous Future Internet composed by several architectures can be expected, each targeting and optimizing different use case scenarios. Moreover, the increasing number of mobile devices, with increasing capabilities and supporting different connectivity technologies, are changing the patterns of traffic exchanged in the Internet. As such, this thesis focuses on the study of interoperability and mobility in Future Internet architectures, two key requirements that need to be addressed for the widely adoption of these network architectures. The first contribution of this thesis is an interoperability framework that, by enabling resources to be shared among different network architectures, avoids resources to be restricted to a given network architecture and, at the same time, promotes the initial roll out of new network architectures. The second contribution of this thesis consists on the development of enhancements for SDN-based and ICN network architectures through IEEE 802.21 mechanisms to facilitate and optimize the handover procedures on those architectures. The last contribution of this thesis is the definition of an inter-network architecture mobility framework that enables MNs to move across access network supporting different network architectures without losing the reachability to resources being accessed. All the proposed solutions were evaluated with results highlighting the feasibility of such solutions and the impact on the overall communication.A Internet do Futuro tem sido alvo de vários estudos nos últimos anos, com a proposta de arquitecturas de rede seguindo quer abordagens evolutionárias (por exemplo, Redes Definidas por Software (SDN)) quer abordagens disruptivas (por exemplo, Redes Centradas na Informação (ICN)). Cada uma destas arquitecturas de rede visa providenciar melhores soluções relativamente a determinados requisitos de utilização da Internet e, portanto, uma Internet do Futuro heterogénea composta por diversas arquitecturas de rede torna-se uma possibilidade, onde cada uma delas é usada para optimizar diferentes casos de utilização. Para além disso, o aumento do número de dispositivos móveis, com especificações acrescidas e com suporte para diferentes tecnologias de conectividade, está a mudar os padrões do tráfego na Internet. Assim, esta tese foca-se no estudo de aspectos de interoperabilidade e mobilidade em arquitecturas de rede da Internet do Futuro, dois importantes requisitos que necessitam de ser satisfeitos para que a adopção destas arquitecturas de rede seja considerada. A primeira contribuição desta tese é uma solução de interoperabilidade que, uma vez que permite que recursos possam ser partilhados por diferentes arquitecturas de rede, evita que os recursos estejam restringidos a uma determinada arquitectura de rede e, ao mesmo tempo, promove a adopção de novas arquitecturas de rede. A segunda contribuição desta tese consiste no desenvolvimento de extensões para arquitecturas de rede baseadas em SDN ou ICN através dos mecanismos propostos na norma IEEE 802.21 com o objectivo de facilitar e optimizar os processos de mobilidade nessas arquitecturas de rede. Finalmente, a terceira contribuição desta tese é a definição de uma solução de mobilidade envolvendo diferentes arquitecturas de rede que permite a mobilidade de dispositivos móveis entre redes de acesso que suportam diferentes arquitecturas de rede sem que estes percam o acesso aos recursos que estão a ser acedidos. Todas as soluções propostas foram avaliadas com os resultados a demonstrar a viabilidade de cada uma das soluções e o impacto que têm na comunicação.Programa Doutoral em Informátic

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    Flexible cross layer optimization for fixed and mobile broadband telecommunication networks and beyond

    Get PDF
    In der heutigen Zeit, in der das Internet im Allgemeinen und Telekommunikationsnetze im Speziellen kritische Infrastrukturen erreicht haben, entstehen hohe Anforderungen und neue Herausforderungen an den Datentransport in Hinsicht auf Effizienz und Flexibilität. Heutige Telekommunikationsnetze sind jedoch rigide und statisch konzipiert, was nur ein geringes Maß an Flexibilität und Anpassungsfähigkeit der Netze ermöglicht und darüber hinaus nur im begrenzten Maße die Wichtigkeit von Datenflüssen im wiederspiegelt. Diverse Lösungsansätze zum kompletten Neuentwurf als auch zum evolutionären Konzept des Internet wurden ausgearbeitet und spezifiziert, um diese neuartigen Anforderungen und Herausforderungen adäquat zu adressieren. Einer dieser Ansätze ist das Cross Layer Optimierungs-Paradigma, welches eine bisher nicht mögliche direkte Kommunikation zwischen verteilten Funktionalitäten unterschiedlichen Typs ermöglicht, um ein höheres Maß an Dienstgüte zu erlangen. Ein wesentlicher Indikator, welcher die Relevanz dieses Ansatzes unterstreicht, zeichnet sich durch die Programmierbarkeit von Netzwerkfunktionalitäten aus, welche sich aus der Evolution von heutigen hin zu zukünftigen Netzen erkennen lässt. Dieses Konzept wird als ein vielversprechender Lösungsansatz für Kontrollmechanismen von Diensten in zukünftigen Kernnetzwerken erachtet. Dennoch existiert zur Zeit der Entstehung dieser Doktorarbeit kein Ansatz zur Cross Layer Optimierung in Festnetz-und Mobilfunknetze, welcher der geforderten Effizienz und Flexibilität gerecht wird. Die übergeordnete Zielsetzung dieser Arbeit adressiert die Konzeptionierung, Entwicklung und Evaluierung eines Cross Layer Optimierungsansatzes für Telekommunikationsnetze. Einen wesentlichen Schwerpunkt dieser Arbeit stellt die Definition einer theoretischen Konzeptionierung und deren praktischer Realisierung eines Systems zur Cross Layer Optimierung für Telekommunikationsnetze dar. Die durch diese Doktorarbeit analysierten wissenschaftlichen Fragestellungen betreffen u.a. die Anwendbarkeit von Cross Layer Optimierungsansätzen auf Telekommunikationsnetzwerke; die Betrachtung neuartiger Anforderungen; existierende Konzepte, Ansätze und Lösungen; die Abdeckung neuer Funktionalitäten durch bereits existierende Lösungen; und letztendlich den erkennbaren Mehrwert des neu vorgeschlagenen Konzepts gegenüber den bestehenden Lösungen. Die wissenschaftlichen Beiträge dieser Doktorarbeit lassen sich grob durch vier Säulen skizzieren: Erstens werden der Stand der Wissenschaft und Technik analysiert und bewertet, Anforderungen erhoben und eine Lückenanalyse vorgenommen. Zweitens werden Herausforderungen, Möglichkeiten, Limitierungen und Konzeptionierungsaspekte eines Modells zur Cross Layer Optimierung analysiert und evaluiert. Drittens wird ein konzeptionelles Modell - Generic Adaptive Resource Control (GARC) - spezifiziert, als Prototyp realisiert und ausgiebig validiert. Viertens werden theoretische und praktische Beiträge dieser Doktorarbeit vertiefend analysiert und bewertet.As the telecommunication world moves towards a data-only network environment, signaling, voice and other data are similarly transported as Internet Protocol packets. New requirements, challenges and opportunities are bound to this transition and influence telecommunication architectures accordingly. In this time in which the Internet in general, and telecommunication networks in particular, have entered critical infrastructures and systems, it is of high importance to guarantee efficient and flexible data transport. A certain level of Quality-of-Service (QoS) for critical services is crucial even during overload situations in the access and core network, as these two are the bottlenecks in the network. However, the current telecommunication architecture is rigid and static, which offers very limited flexibility and adaptability. Several concepts on clean slate as well as evolutionary approaches have been proposed and defined in order to cope with these new challenges and requirements. One of these approaches is the Cross Layer Optimization paradigm. This concept omits the strict separation and isolation of the Application-, Control- and Network-Layers as it enables interaction and fosters Cross Layer Optimization among them. One indicator underlying this trend is the programmability of network functions, which emerges clearly during the telecommunication network evolution towards the Future Internet. The concept is regarded as one solution for service control in future mobile core networks. However, no standardized approach for Cross Layer signaling nor optimizations in between the individual layers have been standardized at the time this thesis was written. The main objective of this thesis is the design, implementation and evaluation of a Cross Layer Optimization concept on telecommunication networks. A major emphasis is given to the definition of a theoretical model and its practical realization through the implementation of a Cross Layer network resource optimization system for telecommunication systems. The key questions answered through this thesis are: in which way can the Cross Layer Optimization paradigm be applied on telecommunication networks; which new requirements arise; which of the required functionalities cannot be covered through existing solutions, what other conceptual approaches already exist and finally whether such a new concept is viable. The work presented in this thesis and its contributions can be summarized in four parts: First, a review of related work, a requirement analysis and a gap analysis were performed. Second, challenges, limitations, opportunities and design aspects for specifying an optimization model between application and network layer were formulated. Third, a conceptual model - Generic Adaptive Resource Control (GARC) - was specified and its prototypical implementation was realized. Fourth, the theoretical and practical thesis contributions was validated and evaluated
    corecore