728 research outputs found

    What Characterizes Safety of Ambient Assisted Living Technologies?

    Get PDF
    Ambient assisted living (AAL) technologies aim at increasing an individual's safety at home by early recognizing risks or events that might otherwise harm the individual. A clear definition of safety in the context of AAL is still missing and facets of safety still have to be shaped. The objective of this paper is to characterize the facets of AAL-related safety, to identify opportunities and challenges of AAL regarding safety and to identify open research issues in this context. Papers reporting aspects of AAL-related safety were selected in a literature search. Out of 395 citations retrieved, 28 studies were included in the current review. Two main facets of safety were identified: user safety and system safety. System safety concerns an AAL system's reliability, correctness and data quality. User safety reflects impact on physical and mental health of an individual. Privacy, data safety and security issues, sensor quality and integration of sensor data, as well as technical failures of sensors and systems are reported challenges. To conclude, there is a research gap regarding methods and metrics for measuring user and system safety in the context of AAL technologies

    Goal Lifecycles and Ontological Models for Intention Based Assistive Living within Smart Environments

    Get PDF
    Current ambient assistive living solutions have adopted a traditional sensor-centric approach, involving data analysis and activity recognition to provide assistance to individuals. The reliance on sensors and activity recognition in this approach introduces issues with scalability and ability to model activity variations. This study introduces a novel approach to assistive living which intends to address these issues via a paradigm shift from a sensor centric approach to a goal-oriented one. The goal-oriented approach focuses on identification of user goals in order to pro-actively offer assistance by either pre-defined or dynamically constructed instructions. This paper introduces the architecture of this goal-oriented approach and describes an ontological goal model to serve as its basis. The use of this approach is illustrated in a case study which focuses on assisting a user with activities of daily living

    Reasoning with user's preferences in ambient assisted living environments

    Get PDF
    Understanding the importance of preference management in ambient intelligent environments is key to providing systems that are better prepared to meet users' expectations. Preferences are fundamental in decision making, so it is an essential element in developing systems that guides the choices of the users. These choices can be decided through argument(s) which are known to have various strengths, as one argument can rely on more certain or vital information than the other. The analysis of survey conducted on preferences handling techniques in Artificial Intelligence (AmI), indicates that most of existing techniques lack the ability to handle ambiguity and/or the evolution of preferences over time. Further investigation identified argumentation technique as a feasible solution to complement existing work. Argumentation provides a means to deal with inconsistent knowledge and we explored its potentials to handle conflicting users preferences by applying to it several real world scenarios. The exploration demonstrates the usefulness of argumentation in handling conflicting preferences and inconsistencies, and provides effective ways to manage, reason and represents user's preferences. Using argumentation technique, this research provide a practical implementation of a system to manage conflicting situations, along with a simple interface that aids the flow of preferences from users to the system, so as to provide services that are better aligned with the users' behaviour. This thesis also describes the functionalities of the implemented system, and illustrates the functions by solving some of the complexities in users' preferences in a real smart home. The system detects potential conflict(s), and solves them using a redefined precedence order among some preference criteria. The research further show how the implemented Hybrid System is capable of interacting with external source's data. The system was used to access and filter live data (groceries products) of a UK supermarket chain store, through their application programming interface (API), and advise users on their eating habits, based on their set preference(s)

    Revisiting the Technology Challenges and Proposing Enhancements in Ambient Assisted Living for the Elderly

    Get PDF
    Several social and technical trends support the elderly’s desire to live independently in their preferred environment, despite their increasing medical needs, and enhance their quality of life at home. Ambient-assisted living (AAL) has the capabilities to support the elderly and to decrease their dependency on formal or informal caregivers. We provide a review of the technological challenges that were identified as inhibiting factors in the past decade and then present recent technological advances, e.g., cloud computing, machine learning, artificial intelligence, the Internet of Things. We also fill the gap in the current literature in regard to specific AAL solutions and propose fourth-generation AAL technology design. We find that most informal caregivers are family members who are medically untrained and that the use of advanced analytical processes on AAL-generated data could significantly increase symptom identification. We also present the implications and remaining challenges along with recommendations for future research

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    A Mobile Healthcare Solution for Ambient Assisted Living Environments

    Get PDF
    Elderly people need regular healthcare services and, several times, are dependent of physicians’ personal attendance. This dependence raises several issues to elders, such as, the need to travel and mobility support. Ambient Assisted Living (AAL) and Mobile Health (m-Health) services and applications offer good healthcare solutions that can be used both on indoor and in mobility environments. This dissertation presents an ambient assisted living (AAL) solution for mobile environments. It includes elderly biofeedback monitoring using body sensors for data collection offering support for remote monitoring. The used sensors are attached to the human body (such as the electrocardiogram, blood pressure, and temperature). They collect data providing comfort, mobility, and guaranteeing efficiency and data confidentiality. Periodic collection of patients’ data is important to gather more accurate measurements and to avoid common risky situations, like a physical fall may be considered something natural in life span and it is more dangerous for senior people. One fall can out a life in extreme cases or cause fractures, injuries, but when it is early detected through an accelerometer, for example, it can avoid a tragic outcome. The presented proposal monitors elderly people, storing collected data in a personal computer, tablet, or smartphone through Bluetooth. This application allows an analysis of possible health condition warnings based on the input of supporting charts, and real-time bio-signals monitoring and is able to warn users and the caretakers. These mobile devices are also used to collect data, which allow data storage and its possible consultation in the future. The proposed system is evaluated, demonstrated and validated through a prototype and it is ready for use. The watch Texas ez430-Chronos, which is capable to store information for later analysis and the sensors Shimmer who allow the creation of a personalized application that it is capable of measuring biosignals of the patient in real time is described throughout this dissertation

    A survey on managing users' preferences in ambient intelligence

    Get PDF
    Understanding the importance of preference management in ambient intelligent environments is key to providing systems that are better prepared to meet users' expectations. This survey provides an account of the various ways that preferences have been handled in Artificial Intelligence. Our analysis indicates that most of those techniques lack the ability to handle ambiguity and the evolution of preferences over time. Further exploration shows that argumentation can provide a feasible solution to complement existing work. We illustrate our claim by using an intelligent environment case study

    A survey on managing users' preferences in ambient intelligence

    Get PDF
    Understanding the importance of preference management in ambient intelligent environments is key to providing systems that are better prepared to meet users' expectations. This survey provides an account of the various ways that preferences have been handled in Artificial Intelligence. Our analysis indicates that most of those techniques lack the ability to handle ambiguity and the evolution of preferences over time. Further exploration shows that argumentation can provide a feasible solution to complement existing work. We illustrate our claim by using an intelligent environment case study

    Using argumentation to solve conflicting situations in users' preferences in ambient assisted living

    Get PDF
    Preferences are fundamental in decision making, so understanding preference management is key in developing systems that guide the choices of the users. These choices can be decided through argument(s) which are known to have various strengths, as one argument can rely on more certain or vital information than the other. We explored argumentation technique from a previous study, and validated its potentials by applying to it several real life scenarios. The exploration demonstrates the usefulness of argumentation in handling conflicting preferences and inconsistencies, and provides effective ways to manage, reason and represents users' preferences. Using argumentation, we provide a practical implementation of a system to manage conflicting situations, and a simple interface that aids the flow of preferences from users to the system. We illustrated using the interface, how the changes in users' preferences can effect system output in a smart home. This article describes the functionalities of the implemented system, and illustrates the functions by solving some of the complexities in users' preferences in a real smart home. The system detects potential conflicts, and tries solve them using a redefined precedence order among some preference criteria. We also show how our system is capable of interacting with external sources data. The system was used to access and use live data of a UK supermarket chain store, through their application programming interface (API) and provide users suggestions on their eating habits, based on their set preference(s). The system was used to filter specific products from the live data, and check the product description, before advising the user accordingly
    • …
    corecore