3,754 research outputs found

    Design and simulation of hydraulic shaking table

    Get PDF
    Recent industrial progress and computational technology made it possible to construct more complex structures. Vibration of these structures due to seismic strength must be measured and proved to prevent them from damage when they are subjected to earthquake. However, the accuracy of estimating the effect of vibrating structures is limited by the mathematical models, which are normally simplified from the actual complex structures. Due to this problem, a study on the development of shaking table is proposed. The main purpose of this study is to obtain the design specifications for a 1-axis (horizontal) hydraulic shaking table with medium loading, which can function primarily as an earthquake simulator and a dynamic structural testing apparatus. The project employs a three stage electrohydraulic servovalve, actuator system complete with hydraulic system as the power and drive unit. Mathematical model for closed loop control experimentation was presented and used to investigate the influence of various parameters on the overall system. The investigation includes the study on the effect of controller gain setting (for PD and AFC), disturbances and system stability. Time domain analysis using computer simulation was conducted to explain and predict the system’s response. Comparison between PD and PD-AFC controllers was done and it was found that latter PD-AFC fulfills the performance and robustness specifications for this project. Other design outcome that limits the change of disturbances on the system was also identified and taken as the framework for real world. This suggests that the next stage in implementation of the designed system can be made for the purpose of an earthquake simulator, since it works very well especially at low frequency level of shakin

    Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model

    Get PDF
    We present a common framework for Bayesian emulation methodologies for multivariate-output simulators, or computer models, that employ either parametric linear models or nonparametric Gaussian processes. Novel diagnostics suitable for multivariate covariance-separable emulators are developed and techniques to improve the adequacy of an emulator are discussed and implemented. A variety of emulators are compared for a humanitarian relief simulator, modelling aid missions to Sicily after a volcanic eruption and earthquake, and a sensitivity analysis is conducted to determine the sensitivity of the simulator output to changes in the input variables. The results from parametric and nonparametric emulators are compared in terms of prediction accuracy, uncertainty quantification and scientific interpretability

    Interactive �Palu Earthquake and Tsunami Museum� as Architectural Mitigation Media

    Get PDF
    Indonesia is located on the edge of �Ring of Fire�, causing it to experience a high rate of natural disasters as the Ring of Fire is also where 90% of all earthquakes occur. Beneath Indonesia is where three major tectonic plates � the Pacific, the Eurasian, and the Indo-Australian meet. Thus, as a country with a very high disaster-risk level, Indonesia needs to implement a more effective mitigation strategy that can be thought to society. This paper will present an interactive earthquake and tsunami museum design idea to promote architecture as an effective mitigation media to educate the society regarding natural disasters, most notably earthquakes and tsunamis. Through the outlines of the design concept, it is expected to transfer �vehicle for three dimension� messages in the mitigation process as information, communication, and public education. To solve the design problems, it uses a symbolic approach and applies the concept of interactive activity programs in spatial sequences. The goal of the program is to bring a more significant impact in communicating the mitigation process for the community at any groups and hoped the impact of natural disasters can be reduced in the future

    empathi: An ontology for Emergency Managing and Planning about Hazard Crisis

    Full text link
    In the domain of emergency management during hazard crises, having sufficient situational awareness information is critical. It requires capturing and integrating information from sources such as satellite images, local sensors and social media content generated by local people. A bold obstacle to capturing, representing and integrating such heterogeneous and diverse information is lack of a proper ontology which properly conceptualizes this domain, aggregates and unifies datasets. Thus, in this paper, we introduce empathi ontology which conceptualizes the core concepts concerning with the domain of emergency managing and planning of hazard crises. Although empathi has a coarse-grained view, it considers the necessary concepts and relations being essential in this domain. This ontology is available at https://w3id.org/empathi/

    Failure-enhanced evacuation training using a VR-based disaster simulator : A comparative experiment with simulated evacuees

    Get PDF
    Evacuation training is an important component of disaster education and survival. Evacuation training using a virtual reality (VR)-based disaster simulator that provides a highly immersive simulated evacuation experience (SEE) has attracted significant attention. To improve the training effect, we propose a failure-enhanced evacuation training model based on Kolb’s experiential learning theory. Our model aims to purposefully induce participants to succumb to conformity bias and fail to evacuate during the first SEE because inactive evacuees (i.e., people who are not evacuating speedily or not starting their evacuation) are simulated in a VR-based disaster simulator. The participants are expected to overcome failure in the second SEE via reflection and conceptualization. A preliminary comparative experiment focused on how simulated evacuees influence the SEE of participants in a VR-based disaster simulator. Results indicated that failure-enhanced evacuation training can successfully improve the training effect

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases
    corecore