36 research outputs found

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments

    Full text link
    Se están realizando muchos esfuerzos en la acuicultura para alcanzar la sostenibilidad, sin embargo aún está lejos de ser sostenible. Sus impactos sobre el medio ambiente pueden prevenirse y corregirse mediante el uso de sensores, desarrollando la conocida como acuicultura de precisión. La calidad del agua afecta el rendimiento de los peces. La temperatura y la salinidad son algunos factores que afectan al crecimiento de los peces. Sin embargo, otros factores como la turbidez, el fotoperíodo y el oxígeno disuelto entre otros pueden afectar a las necesidades nutritivas de los peces. Ajustar la cantidad de alimento necesario es crucial para garantizar la sostenibilidad de la acuicultura y para aumentar el beneficio económico de las instalaciones. Al monitorear la calidad del agua, es posible estimar las necesidades de alimentación. Sin embargo, no es suficiente. El monitoreo del comportamiento de los peces, especialmente durante el período de alimentación, puede ayudar a adaptar el alimento proporcionado. Entonces, si está tan claro que el monitoreo puede ayudar a la producción acuícola, ¿por qué no vemos este sistema de monitoreo en las instalaciones acuícolas? ¿Por qué en la mayoría de las instalaciones la alimentación se da manualmente sin considerar el comportamiento de alimentación de los peces? El precio de los sensores para monitorizar las piscifactorías es extremadamente alto. Los sensores empleados son, en la mayoría de los casos, los mismos que se utilizan para la oceanografía. Los sistemas propuestos en la literatura cubren pocos parámetros de calidad del agua y generalmente no consideran el comportamiento de alimentación de los peces. Son necesarios sensores de bajo costo adecuados para la monitorización de la acuicultura. Esos sensores deben ser de bajo costo, bajo consumo de energía, fáciles de usar y con la posibilidad de incluirlos en una red para enviar los datos. Por lo tanto, podremos utilizar esta red de sensores y sensores para controlar la actividad, enviar alarmas si es necesario y automatizar los procesos. Además, si incluimos Internet, los datos se pueden ver de forma remota. El uso de esos sensores puede ayudar a la producción acuícola. En esta tesis mostramos el estudio de los requisitos y el diseño de sensores para monitorizar la calidad del agua y el proceso de alimentación en piscifactorías y otros entornos. Primero estudiamos en detalle los requisitos de los sensores en acuicultura. Luego mostramos el estado del arte de los sensores actuales para el monitoreo de la calidad del agua y para el monitoreo de la acuicultura. A continuación, presentamos el diseño y desarrollo de nuestros propios sensores de bajo costo y su aplicación en instalaciones de piscifactorías con sistema abierto y sistema de recirculación. Además, mostramos la posibilidad de monitorizar hasta 10 parámetros incluyendo calidad del agua (temperatura, salinidad, turbidez y presencia de hidrocarburo / capa de aceite), ambiente del tanque (nivel de agua, iluminación, presencia de trabajadores) y comportamiento de alimentación de peces (profundidad de natación de bajura, estimación de los cambios en la velocidad de nado de bajíos y la caída de alimento). El sistema propuesto, capaz de monitorear todos estos parámetros, tiene un bajo coste y bajo consumo de energía. El precio estimado es inferior a 100 € por tanque. Además, mostramos el uso de algunos de los sensores antes mencionados para el ajuste automático del proceso de alimentación de peces. Finalmente, mostramos como algunos de los sensores desarrollados se utilizan en otras áreas acuáticas naturales como manglares y estuarios. Además, se presenta un sistema inteligente para monitorear y rastrear la contaminación en los cuerpos de agua.There are many efforts done in the aquaculture to reach its sustainability, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. The water quality affects to the fish performance. The temperature and salinity are some factors that affect to the fish growth. Nevertheless, other factors such as turbidity, photoperiod and dissolved oxygen among other can affect to the fish feeding needs. To adjust the amount of feed needed is crucial to ensure the sustainability of the aquaculture and to increase the economic profit of the facilities. Monitoring the water quality allows estimating the feed needs. However, it is not enough. To monitor the fish behavior, especially during the feeding period can help to adapt the provided feed. Then, if it is so clear that the monitoring can help to the aquaculture production, why we do not see this monitoring systems in the aquaculture facilities? Why in most of the facilities the feed is given manually without considering the fish feeding behavior? Nevertheless, the current price of the sensors for monitoring the fish farms is extremely high. The employed sensors are in most of the cases, the same that are used for oceanography. The proposed systems in the literature only cover some water quality parameters and usually do not consider fish feeding behavior. It is need low-cost sensors suitable for aquaculture monitoring. Those sensors must also be low-energy consumption, easy to use and with the option to include them in a network in order to send the data. Thus, we can use these sensors and sensors network to monitor the activity, to send alarms if it is necessary and to automatize processes. Moreover, including Internet, the data can be seen remotely. The use of those sensors can help to the aquaculture production. In this thesis, we show the study of requirements and design of sensors for monitoring water quality and feeding process in fish farms and other environments. First, we study in detail the requirements of sensors in aquaculture. Then, we show the state of the art of the current sensors for water quality monitoring and for aquaculture monitoring. Following, we present the design and development of some low-cost sensors and their applications in fish farm facilities with open system and recirculating system. Moreover we show a complete system which monitors up to 10 parameters including water quality (temperature, salinity, turbidity and presence of hydrocarbon/oil layer), tank environment (water level, illumination, presence of workers), and fish feeding behavior (shoal swimming depth, estimation of changes on shoal swimming velocity and feed falling). Moreover, it accomplishes the features of low-cost and low energy consumption. The estimated price for proposed system is less than 100€ per tank. In addition, we show the use of some of the aforementioned sensors for automatic adjustment of fish feeding process. Finally, some of the developed sensors are plied in other natural aquatic areas such as mangroves, and estuaries. Moreover, an intelligent system for pollution monitoring and tracking in water bodies are presented.S'estan realitzant molts esforços en l'aqüicultura per assolir la sostenibilitat, malgrat això, encara està lluny de ser sostenible. Els seus impactes sobre el medi ambient es poden prevenir i corregir mitjançant l'ús de sensors, desenvolupant la coneguda com a aqüicultura de precisió. La qualitat de l'aigua afecta el rendiment dels peixos. La temperatura i la salinitat són alguns factors que afecten el creixement dels peixos. A més a més, altres factors com la terbolesa, el fotoperíode i l'oli dissolt entre uns altres poden afectar a les necessitats nutritives dels peixos. Ajustar la quantitat d'aliment necessari és crucial per garantir la sostenibilitat de l'aqüicultura i per augmentar el benefici econòmic de les instal·lacions. Al monitoritzar la qualitat de l'aigua, és possible estimar les necessitats d'alimentació. No obstant això, no és suficient. Monitoritzar el comportament dels peixos, especialment durant el període d'alimentació, pot ajudar a adaptar el subministrament alimentari. Aleshores, si es tan clar que el monitoratge pot ajudar a la producció aqüícola, per què no veiem aquest sistema de monitoratge en les instal·lacions aquàtiques? Per què a la majoria de les instal·lacions la alimentació es dóna manualment sense considerar el comportament alimentari dels peixos? El preu dels sensors per controlar les piscifactories és extremadament alt. Els sensors empleats són, en la majoria dels casos, els mateixos que es fan servir per a l'oceanografia. Els sistemes proposats en la literatura monitoritzen pocs paràmetres de qualitat de l'aigua i generalment no consideren el comportament dels peixos durant l'alimentació. Són necessaris sensors de baix cost adequats per a la monitorització de l'aqüicultura. Aquests sensors han de ser de baix cost, baix consum d'energia, senzills d'usar i amb la possibilitat d'incloure'ls en una xarxa per enviar-los. Per tant, podrem utilitzar aquesta xarxa de sensors i sensors per controlar l'activitat, enviar alarmes si és necessari i automatitzar els processos. A més, si incloem Internet, les dades es podran veure de forma remota. L'ús d'aquests sensors pot ajudar a la producció aqüícola. En aquesta tesi es mostra l'estudi dels requisits i el disseny de sensors per a monitoritzar la qualitat de l'aigua i el procés d'alimentació en piscifactories i altres entorns. Primer, estudiem en detall els requisits dels sensors en aqüicultura. A continuació, es mostra el estat de l'art dels sensors actuals per al monitoratge de la qualitat de l'aigua i per al monitoratge de l'aqüicultura. A continuació, presentem el disseny i desenvolupament dels nostres propis sensors de baix cost i la seva aplicació en instal·lacions d'aqüicultura amb sistema obert i sistema de recirculació. A més, mostrem la possibilitat de monitoritzar fins a 10 paràmetres, incloent-hi la qualitat de l'aigua (temperatura, salinitat, terbolesa i presència d'hidrocarburs / capa d'oli), ambient del tanc (nivell d'aigua, il·luminació, presència de treballadors) i alimentació del consum de peces (profunditat de natació de baix, estimació dels canvis en la velocitat de naixement de baixos i la caiguda d'aliment). El sistema proposat, capaç de controlar tots aquests paràmetres, té un baix cost i baix consum d'energia. El preu estimat és inferior a 100 € per tanc. A més, mostrem l'ús d'alguns dels sensors abans esmentats per a l'ajust automàtic del procés d'alimentació de peces. Finalment, mostrem com alguns dels sensors desenvolupats es fan servir en altres àrees aquàtiques naturals com manglars i estuaris. A més, es presenta un sistema intel·ligent per monitoritzar i rastrejar la contaminació en els cossos d'aigua.Parra Boronat, L. (2018). Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106369TESI

    Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms

    Full text link
    [EN] Turbidity monitoring is necessary in many cases and several sensors have been developed for this purpose. However, in some cases to quantify the turbidity it is not enough and its characterization is necessary. In fish farms, the increase of sedimentary or phytoplanktonic turbidity requires different actions to prevent further damages. For this reason, a sensor able to differentiate between turbidity sources is necessary. In this paper, a turbidity sensor able to distinguish different types of turbidity is designed, developed and calibrated. The sensor is based on the Beer-Lambert law and it uses four LEDs as light sources with different wavelengths. The sensing elements are located at 180° of the light sources and consist of a photodiode and a photoresistor, sensitive to infrared and visible wavelengths respectively. For the calibration process different turbidity sources were employed, Isochrysis galbana, Tetraselmis chuii and sediment. The results show that it is possible to determine the turbidity using the infrared light and to characterize the origin of that turbidity with the red light. An algorithm was created in order to create a method to process the data from each sample to obtain the turbidity, the origin of this turbidity and the concentration of the turbidity source. With this algorithm, we can create a smart turbidity sensor for water quality monitoring. Our main application is focused on monitoring the water input in fish farm facilities; however, this smart sensor will be useful in many other areas.This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)". Grant number FPU14/02953. This work has been partially supported by the "Conselleria de Educacion, Investigacion, Cultura y Deporte", through the "Subvenciones para la contratacion de personal investigador de caracter (Convocatoria 2017)".Grant number ACIF/2017/069.Parra-Boronat, L.; Rocher-Morant, J.; Escrivá-Perales, J.; Lloret, J. (2018). Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering. 81:10-18. https://doi.org/10.1016/j.aquaeng.2018.01.004S10188

    Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process

    Get PDF
    The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90  .This work has been partially supported by the “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para contratos predoctorales de Formación del Profesorado Universitario FPU (Convocatoria 2014)”. Grant number FPU14/02953. The research leading to these results has received funding from “la Caixa” Foundation and Triptolemos Foundation

    Water quality monitoring in recirculating aquaculture systems

    Get PDF
    Good water quality in recirculating aquaculture systems (RAS) is crucial for ensuring the successful growth and survival of reared species. So far, there are no regulations for which parameters should be measured in RAS, and each farmer decides which parameters to follow. Traditionally, water quality parameters have been measured at certain intervals with handheld sensors and laboratory analyses, which can be labour intensive. Currently, a variety of sensors and monitoring equipment is available, even for the real-time monitoring of water quality parameters. Internet of Things-based systems and artificial intelligence can be applied for the monitoring purposes which allows real-time measurements and warnings of critical situations. However, many of the modern systems need competent users and require regular maintenance and calibration. Changes in water quality also induces changes in fish behaviour, such as swimming activity, depth, acceleration and water quality can be assessed also based on these changes. In this review, water quality parameters, variety of sensors and monitoring technologies have been summarised to provide an overview of the current monitoring systems for water quality. Additionally, analytical methods for more advanced analyses have also been briefly summarised. Although there are several advanced options available for monitoring the basic water quality parameters, real-time measurements of more advanced parameters still required require further development

    A group-based architecture and protocol for wireless sensor networks

    Full text link
    There are many works related to wireless sensor networks (WSNs) where authors present new protocols with better or enhanced features, others just compare their performance or present an application, but this work tries to provide a different perspective. Why don¿t we see the network as a whole and split it into groups to give better network performance regardless of the routing protocol? For this reason, in this thesis we demonstrate through simulations that node¿s grouping feature in WSN improves the network¿s behavior. We propose the creation of a group-based architecture, where nodes have the same functionality within the network. Each group has a head node, which defines the area in which the nodes of such group are located. Each node has a unique node identifier (nodeID). First group¿s node makes a group identifier (groupID). New nodes will know their groupID and nodeID of their neighbors. End nodes are, physically, the nodes that define a group. When there is an event on a node, this event is sent to all nodes in its group in order to take an appropriate action. End nodes have connections to other end nodes of neighboring groups and they will be used to send data to other groups or to receive information from other groups and to distribute it within their group. Links between end nodes of different groups are established mainly depending on their position, but if there are multiple possibilities, neighbor nodes could be selected based on their ability ¿, being ¿ a choice parameter taking into account several network and nodes parameters. In order to set group¿s boundaries, we can consider two options, namely: i) limiting the group¿s diameter of a maximum number of hops, and ii) establishing boundaries of covered area. In order to improve the proposed group-based architecture, we add collaboration between groups. A collaborative group-based network gives better performance to the group and to the whole system, thereby avoiding unnecessary message forwarding and additional overheads while saving energy. Grouping nodes also diminishes the average network delay while allowing scaling the network considerably. In order to offer an optimized monitoring process, and in order to offer the best reply in particular environments, group-based collaborative systems are needed. They will simplify the monitoring needs while offering direct control. Finally, we propose a marine application where a variant of this groupbased architecture could be applied and deployed.García Pineda, M. (2013). A group-based architecture and protocol for wireless sensor networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/27599TESISPremios Extraordinarios de tesis doctorale

    Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms

    Full text link
    [EN] Wireless sensor networks are widely used for monitoring different processes, including agriculture, in order to reach sustainability. One of the keys to sustainable crops is water saving. In particular, saving water is extremely important in arid and semiarid regions. In those regions, citrus trees are cultivated, and drip irrigation is used to save water. In this paper, we propose a smart irrigation system for citrus trees using a WSN. We describe the employed sensors and nodes for this proposal. Next, we present the proposed architecture and the operational algorithms for the nodes. Moreover, we designed different algorithms for fault tolerance and energy saving functionalities. The energy saving algorithm is based on the relevance of the gathered data, which is analyzed in order to consider whether the information should be forwarded or not. A TPC-based protocol is proposed to perform the communication among the nodes of our system. In addition, we present different simulations of the proposed system. Particularly, we show the consumed bandwidth and the remaining energy in the different nodes. Finally, we test different energy configurations to evaluate the network lifetime and the remaining energy when the first node depletes its energy.This work has been partially supported by the “Conselleria d' Educació, Investigació, Cultura i Esport” through the “Subvenciones para la contratación de personal investigator de carácter predoctoral (Convocatoria 2017)” Grant number ACIF/2017/069, by the “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para contratacion predoctoral de Formación del Profesorado Universitario FPU (Convocatoria 2014)”. Grant number FPU14/02953 and finally, the research leading to these results has received funding from “la Caixa” Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Parra-Boronat, L.; Rocher-Morant, J.; García-García, L.; Lloret, J.; Tomás Gironés, J.; Romero Martínez, JO.; Rodilla, M.... (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms. 10(2):95-115. https://doi.org/10.5296/npa.v10i2.13205S9511510
    corecore